Rendre rationnel un dénominateur
Nous allons appliquer les identités remarquables aux calculs sur les racines carrées, notamment pour rendre rationnel un dénominateur.
1. identités remarquables
Propriété (Identité remarquable n°1.)
Pour tous nombres réels $a$ et $b$, on a :
$$\begin{array}{rcc}
&\color{blue}{— Développement—>}&\\
&\color{brown}{\boxed{\; (a+b)^2 = a^2 + 2ab+b^2\; }}&\quad(I.R.n°1)\\
&\color{brown}{\boxed{\; (a-b)^2 = a^2 – 2ab+b^2\; }}&\quad(I.R.n°2)\\
&\color{brown}{\boxed{\; (a+b)(a-b) = a^2 – b^2\; }}&\quad(I.R.n°3)\\
&\color{blue}{ <— Factorisation — }& \\
\end{array}$$
2. Rendre rationnel un dénominateur
Dans une expression numérique quotient $A$, rendre rationnel un dénominateur, signifie qu’il faut transformer $A$ pour obtenir un dénominateur entier. (Faire disparaître la racine carrée au dénominateur).
Rappels : Soient $a$, $b$, $c$ et $d$ quatre nombres rationnels, $d>0$. Alors :
La quantité conjuguée de $c+\sqrt{d}$ est $c-\sqrt{d}$, et réciproquement. De plus :
$$(c+\sqrt{d})(c-\sqrt{d}) =c^2-d \in \Q$$
Le produit ces deux quantités conjuguées est un nombre rationnel !
Exercice résolu n°1. Écrire les expressions numériques suivantes avec un dénominateur rationnel, puis sous la forme $a+b\sqrt{c}$ où $a$, $b$ et $c$ sont des nombres rationnels, $c\geqslant0$.
1°) $A=\dfrac{1+\sqrt{2}}{\sqrt{2}}$ ;
2°) $B=\dfrac{5}{4-\sqrt{3}}$ ;
3°) $C=\dfrac{5+3\sqrt{2}}{3+\sqrt{2}}$ ;
Liens connexes
- Calcul littéral. Expressions algébriques ;
- La propriété de distributivité.
- Reconnaitre une forme factorisée et une forme développée ou développée réduite.
- Les identités remarquables.
- Développer et réduire une expression algébrique simple.
- Développer et réduire une expression algébrique avec les identités remarquables.
- Factoriser une expression algébrique simple.
- Factoriser une expression algébrique avec les identités remarquables.
- Applications des identités remarquables aux racines carrées.
- Rendre rationnel un dénominateur.
Vues : 11722