1. Comparer deux fractions de même dénominateur
Une fraction est de la forme : $\dfrac{a}{b}$, où $a$ et $b$ sont des nombres entiers, $b\not=0$ :
- a est le numérateur (le nombre en haut),
- b est le dénominateur (le nombre en bas, qui n’est pas nul).
La comparaison de deux fractions de même dénominateur est très facile.
Propriété 1.
Deux fractions de même dénominateur $\dfrac{a}{b}$ et $\dfrac{c}{b}$ sont rangées dans le même ordre que leurs numérateurs. $$\boxed{~\dfrac{a}{b}<\dfrac{c}{b}\quad\text{équivaut à}\quad a<c~}$$ Autrement dit : Lorsque les dénominateurs sont égaux, on compare seulement les numérateurs.
2. Exercices résolus
Exercice résolu n°1.
Comparer les deux fractions : $\dfrac{3}{7}\quad\text{et}\quad \dfrac{5}{7}$
Exercice résolu n°2.
Comparer les deux fractions : $\dfrac{8}{10}\quad\text{et}\quad \dfrac{6}{10}$
Exemple résolu 3.
Ranger les fractions suivantes dans l’ordre croissant : $\dfrac{4}{5}$, $\dfrac{12}{5}$, $\dfrac{8}{5}$, $\dfrac{17}{5}$ et $\dfrac{3}{5}$.
Exemple résolu 4.
Ranger les fractions suivantes dans l’ordre décroissant : $\dfrac{4}{7}$, $2$, $\dfrac{8}{7}$, $\dfrac{17}{7}$ et $\dfrac{3}{7}$.