Intégration - Calcul des primitives

Exercice n°1

Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué :

a)
$$f(x) = \frac{5}{(2x+1)^3} \text{ sur } I = \left[\frac{-1}{2}; +\infty \right]$$
 b) $g(x) = \frac{\ln x}{x} \text{ sur } I = \left[0; +\infty \right]$

b)
$$g(x) = \frac{\ln x}{x}$$
 sur $I =]0; +\infty[$

c)
$$h(x) = \sqrt{e^{-3x}}$$
 sur \mathbb{R}

d)
$$k(x) = 6\sin(2x)\cos^3(2x)$$
 sur \mathbb{R}

Exercice n°2

Le plan est muni d'un repère orthonormal $(O; \vec{i}; \vec{j})$ d'unité graphique 2cm. On considère la fonction f définie sur \mathbb{R} par $f(x)=(x^2-2x-1)e^{-x}$. Soit F la fonction définie sur \mathbb{R} par $F(x) = (a x^2 + b x + c) e^{-x}$ où a, b et c sont des réels à déterminer.

- 1°) Calculer la dérivée de F en fonction de a, b et c.
- 2°) Déterminer a, b et c pour que F soit une primitive de la fonction f.
- 3°) Déterminer la primitive F_1 de la fonction f qui prend la valeur 5 en 0.
- 4°) Calculer l'aire du domaine du plan délimité par la courbe de f, l'axe des abscisses et les deux droites d'équations x=0 et x=2. On donnera cette aire en u.a. puis en cm².

Exercice n°3

Soit n un entier naturel. On note f_n la fonction définie sur \mathbb{R} par $f_n(x) = \frac{e^{-nx}}{1 + e^{-x}}$

On pose, pour tout entier naturel n : $u_n = \int_0^1 f_n(x) dx$.

- 1° a) Calculer u_1 .
 - b) Montrer que $u_0 + u_1 = 1$.
 - c) En déduire la valeur exacte de u_0 .
- 2° a) Démontrer que pour tout x>0 et tout entier naturel $n: e^{-nx-x} \le e^{-nx}$
 - b) En déduire le sens de variation de la suite (u_n) .
- 3°) Démontrer que pour tout entier naturel n : $0 \le u_n \le \int_0^1 e^{-nx} dx$
- 4° a) Calculer l'intégrale $I_n = \int_0^1 e^{-nx} dx$
 - b) En déduire que la suite (u_n) est convergente et calculer sa limite.

Corrigé

Exercice n°1 L'ART DE LA TRANSFORMATION !

Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué :

a) Recherche d'une primitive de $f(x) = \frac{5}{(2x+1)^3}$ sur $I = \left[\frac{-1}{2}; +\infty\right[$

On pose: u(x)=2x+1 donc: u'(x)=2

Puis, On transforme f(x) en fonction de u et de u'. Par suite :

$$f(x) = \frac{5}{u^3} = \frac{5}{2} \times \frac{2}{u^3} = \frac{5}{2} \times \frac{u'}{u^3} = \frac{5}{2} \times u'u^{-3}$$

Or, une primitive de $u'u^{-3}$ est : $\frac{u^{-3+1}}{-3+1} + C = \frac{u^{-2}}{-2} + C = \frac{-1}{2} \times \frac{1}{u^2} + C$

Donc une primitive de f est la fonction F définie par : $F(x) = \frac{5}{2} \times \frac{-1}{2} \times \frac{1}{u^2} + C$

D'où: $F(x) = \frac{-5}{4(2x+1)^2} + C$

b) Recherche d'une primitive de $g(x) = \frac{\ln x}{x}$ sur $I =]0; +\infty[$

On pose: $u(x) = \ln x \text{ donc}: u'(x) = \frac{1}{x}$.

Puis, On transforme g(x) en fonction de u et de u'. Par suite :

 $g(x) = \frac{\ln x}{x} = \frac{1}{x} \times \ln x = u'u = u'u^{1}.$

Or, une primitive de $u'u^1$ est : $\frac{u^2}{2} + C = \frac{1}{2} \times u^2 + C$

Donc une primitive de g est la fonction G définie par : $G(x) = \frac{1}{2}(\ln x)^2 + C$

c) Recherche d'une primitive de $h(x) = \sqrt{e^{-3x}}$ sur \mathbb{R}

Cette fonction ne fait pas partie des fonctions de référence, ni des fonctions usuelles, ni des fonctions composées. Nous allons lui appliquer une transformation.

L'exponentielle étant définie sur \mathbb{R} et toutes ses valeurs sont (strictement) positives, la fonction h est bien définie et continue sur \mathbb{R} ; donc elle admet des primitives.

D'autre part, pour tout $x \in \mathbb{R}$, $h(x) = \sqrt{e^{-3x}} = (e^{-3x})^{\frac{1}{2}} = e^{-\frac{3}{2}x}$ Et là, ça devient plus simple! Nous reconnaissons une forme e^{ax} .

On pose: $u(x) = -\frac{3}{2}x$ donc: $u'(x) = -\frac{3}{2}$.

Puis, On transforme h(x) en fonction de u et de u'. Par suite :

 $h(x) = -\frac{2}{3} \times \left(-\frac{3}{2}\right) e^{-\frac{3}{2}x} = -\frac{2}{3} \times u' e^{u}$

Or, une primitive de la fonction composée $u'e^u$ est : e^u+C .

Donc, une primitive de h est la fonction H définie par : $H(x) = -\frac{2}{3}e^{-\frac{3}{2}x} + C$

d) Recherche d'une primitive de $k(x) = 6\sin(2x)\cos^3(2x)$ sur \mathbb{R}

On pose: $u(x) = \cos(2x)$ donc: $u'(x) = -2\sin(2x)$.

Puis, On transforme k(x) en fonction de u et de u'. Par suite :

$$k(x) = -3 \times (-2\sin(2x)) \times (\cos(2x))^3 = -3 \times u'u^3$$
.

Or, une primitive de la fonction composée $u'u^3$ est : $\frac{1}{4}u^4+C$.

Donc, une primitive de k est la fonction K définie par : $K(x) = -\frac{3}{4}\cos^4(2x) + C$

Exercice n°2

Le plan est muni d'un repère orthonormal (O; i; j) d'unité graphique 2cm. On considère la fonction f définie sur \mathbb{R} par $f(x) = (x^2 - 2x - 1)e^{-x}$. Soit F la fonction définie sur \mathbb{R} par $F(x) = (ax^2 + bx + c)e^{-x}$ où a, b et c sont des réels à déterminer.

1°) Calculer la dérivée de F en fonction de a, b et c.

La fonction F s'écrit sous la forme d'un produit *u.v.*, avec

et
$$u(x)=(ax^2+bx+c)$$
 donc: $u'(x)=2ax+b$
 $v(x)=e^{-x}$ donc: $v'(x)=-e^{-x}$

Comme (u.v)'=u'.v+u.v', on a donc:

$$F'(x) = (2ax+b)e^{-x} + (ax^2+bx+c)(-e^{-x})$$

donc $F'(x) = (2ax+b)e^{-x} - (ax^2+bx+c)e^{-x}$

On met e^{-x} en facteur et on réduit l'expression entre parenthèses pour obtenir :

$$F'(x) = (-ax^2 + (2a-b)x + (b-c))e^{-x}$$

2°) Déterminer a, b et c pour que F soit une primitive de la fonction f.

F est une primitive de la fonction f sur \mathbb{R} si et seulement si :

pour tout $x \in \mathbb{R}$: F'(x) = f(x). Par conséquent :

pour tout
$$x \in \mathbb{R}$$
: $(-ax^2 + (2a-b)x + (b-c))e^{-x} = (x^2 - 2x - 1)e^{-x}$.

Comme pour tout $x \in \mathbb{R}$: $e^{-x} \neq 0$ on a: $-ax^2 + (2a - b)x + (b - c) = x^2 - 2x - 1$

Et, par identification des coefficients des deux polynômes, on obtient :

$$\begin{cases} -a=1\\ 2a-b=-2 \text{ donc} \\ b-c=-1 \end{cases} \begin{cases} a=-1\\ -2-b=-2 \text{ donc} \\ b-c=-1 \end{cases} \begin{cases} a=-1\\ b=0 \\ c=1 \end{cases} \text{ CQFD.}$$

Par conséquent :

$$F(x)=(-x^2+1)e^{-x}$$
.

3°) Déterminer la primitive F_1 de la fonction f qui prend la valeur 5 en 0.

 F_1 est une autre primitive de f sur \mathbb{R} , donc il existe une constante C telle que pour tout $x \in \mathbb{R}$: $F_1(x) = F(x) + C$.

Mais alors, comme F_1 vérifie la « condition initiale » $F_1(0)=5$, on alors les équivalences suivantes :

$$F_1(0)=5$$
 (ssi) $(-0^2+1)e^{-0}+C=5$ (ssi) $1+C=5$ (ssi) $C=4$.

<u>Conclusion</u>: La primitive F_1 de la fonction f qui prend la valeur 5 en 0 est la fonction définie par : $F_1(x) = (-x^2 + 1)e^{-x} + 4$.

 4°) Calculer l'aire du domaine du plan délimité par la courbe de f, l'axe des abscisses et les deux droites d'équations x=0 et x=2. On donnera cette aire en u.a. puis en cm².

Rappel: pour calculer une aire entre la courbe de f et l'axe des abscisses, sur [a;b]; il faut déterminer d'abord le signe de la fonction sur l'intervalle [a;b] puis,

- sur la partie de l'intervalle où *la fonction est positive*, *l'aire est égale à l'intégrale de f*;
- sur la partie du domaine où *la fonction est négative, l'aire est égale à l'intégrale de f* .

Dans notre cas, on étudie le signe de $f(x)=(x^2-2x-1)e^{-x}$ sur [0; 2].

Comme pour tout $x \in \mathbb{R}$: $e^{-x} > 0$, on a: f(x) > 0 (ssi) $x^2 - 2x - 1 > 0$.

On calcule le discriminant pour trouver les racines du trinôme s'il en existe :

 $\Delta = b^2 - 4ac = (-2)^2 - 4 \times 1 \times (-1) = 8$. Comme $\Delta > 0$, le trinôme admet deux racines distinctes :

$$x_1 = \frac{-(-2) - \sqrt{8}}{2 \times 1} = \frac{2 - 2\sqrt{2}}{2} = 1 - \sqrt{2} \approx -0.4142... < 0$$
 et $x_2 = 1 + \sqrt{2} \approx 2.4142... > 2$

Le coefficient de x^2 étant positif, f(x) est positive à l'extérieur des racines et négative entre les racines.

Donc pour tout $x \in [0,2]$: f(x) < 0.

Par conséquent : l'aire \mathcal{A} du domaine du plan délimité par la courbe de f, l'axe des abscisses et les deux droites d'équations x=0 et x=2, est donnée par :

$$\mathcal{A} = \int_{0}^{2} -f(x) dx = [-F(x)]_{0}^{2} = -F(2) - (-F(0)) = F(0) - F(2)$$

$$\mathcal{A} = [(-0^{2} + 1)e^{-0}] - [(-2^{2} + 1)e^{-2}] = 3e^{-2} + 1$$

<u>Conclusion</u>: $\mathcal{A} = 3e^{-2} + 1$ u.a. (en unités d'aires).

De plus comme OI = OJ = 2 cm, on a : 1 u.a. = $2 \times 2 = 4$ cm², on a :

 $\mathcal{A} = 4(3e^{-2}+1)$ cm² (en centimètres carrés).

Je vérifie à la calculatrice Sur TI, je tape :

(-) 2nde CATALOG fnInt ou fonctIntegr((X²-2X-1) e^{-x},X,0,2) et j'obtiens 1,40600585...

Je calcule une valeur approchée de mon résultat et j'obtiens : $3e^{-2}+1=1,40600585...$ Mon résultat est correct!

Exercice n°3

Soit *n* un entier naturel. On note f_n la fonction définie sur \mathbb{R} par $f_n(x) = \frac{e^{-nx}}{1+e^{-x}}$

On pose, pour tout entier naturel n : $u_n = \int_0^1 f_n(x) dx$.

1°.a) Calculer u₁.

$$u_1 = \int_0^1 f_1(x) dx = \int_0^1 \frac{e^{-x}}{1 + e^{-x}} dx$$

Même technique que l'exercice n°1. On cherche une primitive de la fonction f_1 .

On pose: $u(x) = 1 + e^{-x}$ donc: $u'(x) = -e^{-x}$.

Puis, On transforme f(x) en fonction de u et de u'. Par suite : $f_1(x) = \frac{-u'}{x}$

On remarque, au passage, que pour tout sur \mathbb{R} : u(x)>0. Or, une primitive de $\frac{u'}{u}$ est : $\ln u + C$. Donc une primitive de f_1 est la fonction F_1 définie par : $F(x) = -\ln(1 + e^{-x}) + C$ (Ne pas oublier le signe moins).

Donc
$$u_1 = [F_1(x)]_0^1 = -\ln(1+e^{-1}) + \ln(1+e^{-0})$$

Donc $u_1 = -\ln(1+\frac{1}{e}) + \ln 2 = -\ln(\frac{e+1}{e}) + \ln 2 = \ln(\frac{e}{e+1}) + \ln 2$.
Conclusion: $u_1 = \ln(\frac{2e}{e+1})$.

1°.b) Montrer que
$$u_0 + u_1 = 1$$
.
 $u_0 + u_1 = \int_0^1 f_0(x) dx + \int_0^1 f_1(x) dx = \int_0^1 (f_0(x) + f_1(x)) dx$
Donc: $u_0 + u_1 = \int_0^1 (\frac{1}{1 + e^{-x}} + \frac{e^{-x}}{1 + e^{-x}}) dx$
Par suite $u_0 + u_1 = \int_0^1 1 dx = [x]_0^1 = 1 - 0 = 1$ CQFD.

1°.c) En déduire la valeur exacte de u_0 .

D'après ce qui précède, nous savons que : $u_0 + u_1 = 1$, donc $u_0 = 1 - u_1$.

Et d'après la question 1°.a) nous savons que $u_1 = \ln\left(\frac{2e}{e+1}\right)$, qu'on pourrait

décomposer d'une autre manière sachant que $\ln e = 1$

$$u_1 = \ln\left(\frac{2e}{e+1}\right) = \ln\left(\frac{2}{e+1}\right) + \ln e = \ln\left(\frac{2}{e+1}\right) + 1 \quad \text{Donc}$$

$$u_0 = 1 - u_1 = 1 - \left[\ln\left(\frac{2}{e+1}\right) + 1\right] = -\ln\left(\frac{2}{e+1}\right) \quad \text{Conclusion} : \quad u_0 = \ln\left(\frac{e+1}{2}\right) \quad \text{CQFD}.$$

2°.a) Démontrer que pour tout x > 0 et tout entier naturel n: $e^{-nx-x} ≤ e^{-nx}$

On commence par transformer cette expression : $[e^{-nx-x} \le e^{-nx}] \Leftrightarrow [e^{-(n+1)x} \le e^{-nx}]$. Ce qui constitue une écriture *plus simple*!

1ère méthode : On fait un raisonnement par récurrence :

Pour chaque entier naturel n, on appelle P_n la proposition logique :

$$P_n$$
: [Pour tout $x > 0$: $e^{-(n+1)x} \le e^{-nx}$]

Montrons par récurrence que pour tout $n \in \mathbb{N}$, P_n est vraie.

i) Initialisation:

Pour n=0, P_0 s'écrit : [pour tout x > 0 : $e^{-x} \le 1$].

Or, nous savons que la fonction exponentielle est strictement croissante sur \mathbb{R} .

Donc pour tout x > 0, on a : -x < 0, donc : $e^{-x} \le e^0$. Ce qui donne $e^{-x} \le 1$. Donc P_0 est vraie.

ii) Hérédité:

Soit $n \in \mathbb{N}$. Supposons que P_n est vraie. Montrons que P_{n+1} est vraie.

Par hypothèse de récurrence P_n est vraie. Donc : [Pour tout x > 0: $e^{-(n+1)x} \le e^{-nx}$].

Or pour tout x > 0: $e^{-x} > 0$. Donc en multipliant par e^{-x} , on obtient:

Pour tout x > 0: $e^{-x} \times e^{-(n+1)x} \le e^{-x} \times e^{-nx}$

Donc, pour tout x > 0: $e^{-(n+1)x-x} \le e^{-nx-x}$

Donc, pour tout x > 0: $e^{-(n+1)x-x} \le e^{-nx-x}$

Ce qui montre que : P_{n+1} est vraie.

<u>Conclusion</u>: Pour tout $n \in \mathbb{N}$ et tout x > 0: [$e^{-(n+1)x} \le e^{-nx}$].

<u>2ème méthode</u>: On pose $q = e^{-x}$ et on remarque que pour tout x > 0: 0 < q < 1. Donc la suite géométrique (q^n) est strictement décroissante. Donc pour tout entier n: $q^{n+1} \le q^n$. Ce qui donne, pour tout entier naturel n et tout x > 0: $e^{-(n+1)x} \le e^{-nx}$. C'est plus court et tout aussi élégant!

2° .b) En déduire le sens de variation de la suite (u_n)

Afin de comparer intégrales, il faut commencer par comparer les fonctions.

On sait que, pour tout x > 0: $1 + e^{-x} > 0$. Donc, d'après ce qui précède :

Pour tout $n \in \mathbb{N}$ et tout x > 0: $e^{-(n+1)x} \le e^{-nx}$ donc, en divisant par $1 + e^{-x} > 0$:

Pour tout x > 0: $\frac{e^{-(n+1)x}}{1+e^{-x}} \le \frac{e^{-nx}}{1+e^{-x}}$. Donc, pour tout x > 0: $f_{n+1}(x) \le f_n(x)$

D'après la conservation de l'ordre par les intégrales et 0 < 1, on a :

 $\int_0^1 f_{n+1}(x) dx \le \int_0^1 f_n(x) dx$. Ce qui donne: $u_{n+1} \le u_n$.

Conclusion : La suite (u_n) est décroissante

3°) Démontrer que pour tout entier naturel n: $0 \le u_n \le \int_0^1 e^{-nx} dx$

On sait que, pour tout x > 0, on a : $0 < e^{-x} \le 1$. Donc en ajoutant 1 : $1 + 0 < 1 + e^{-x} \le 2$.

Donc, en prenant l'inverse : $\frac{1}{2} \le \frac{1}{1 + e^{-x}} \le 1$. Par conséquent : $0 \le \frac{1}{1 + e^{-x}} \le 1$.

Maintenant, en multipliant par $e^{-nx} > 0$, pour tout x > 0, on a : $0 \le \frac{e^{-nx}}{1 + e^{-x}} \le e^{-nx}$

D'après la conservation de l'ordre par les intégrales et 0 < 1, on a :

$$0 \le \int_0^1 \frac{e^{-nx}}{1 + e^{-x}} dx \le \int_0^1 e^{-nx} dx$$

Conclusion: $0 \le u_n \le \int_0^1 e^{-nx} dx$

<u>4°.a) Calculer l'intégrale</u> $I_n = \int_0^1 e^{-nx} dx$

Il faut chercher une primitive de la fonction g définie par : $g(x)=e^{-nx}$

On pose: u(x) = -nx donc: u'(x) = -n.

Puis, On transforme g(x) en fonction de u et de u'. Par suite : $g(x) = \frac{1}{-n} \times (-n)e^{-nx}$

qu'on peut aussi écrire : $g(x) = \frac{1}{-n} \times u'e^u$. Or, une primitive de $u'e^u$ est : $e^u + C$.

Donc une primitive de g est la fonction G définie par : $G(x) = \frac{-1}{n} e^{-nx} + C$

Donc $I_n = [G(x)]_0^1 = \frac{-1}{n}e^{-n} - \frac{-1}{n}e^0 = \frac{1}{n}(1 - e^{-n})$

Conclusion: $I_n = \frac{1}{n} (1 - e^{-n})$.

4° .b) En déduire que la suite (u_n) est convergente et calculer sa limite.

D'après la question précédente, on sait que : pour tout entier $n \in \mathbb{N}$: $0 \le u_n \le I_n$. Il suffit de calculer la limite de I_n lorsque n tend vers l'infini.

Or, d'une part : $\lim_{n \to +\infty} \left[\frac{1}{n} \right] = 0$. Et d'autre part : $\lim_{n \to +\infty} \left[e^{-n} \right] = \lim_{x \to -\infty} \left[e^{x} \right] = 0$

donc $\lim_{n \to +\infty} (1 - e^{-n}) = 1$. Comme $I_n = \frac{1}{n} (1 - e^{-n})$, par produit des limites, nous

obtenons: $\lim_{n\to+\infty} I_n = 0$

<u>Conclusion</u>: D'après le théorème de comparaison (ou des Gendarmes), on peut affirmer que la suite (u_n) est convergente et $\lim_{n \to +\infty} u_n = 0$.

OUF!