Loi binomiale et Calculatrices

Schéma de Bernoulli. Loi binomiale.

Ici il faut faire un (grand) effort de rédaction

On considère une expérience aléatoire à deux issues. L'une qu'on appelle « Succès » avec une probabilité p, et l'autre, l'événement contraire noté \overline{S} , qu'on appelle « Échec » avec une probabilité 1-p. C'est une *épreuve de Bernoulli* de paramètre p *égal à la probabilité du succès*.

On recommence *n* fois une épreuve de Bernoulli de paramètre *p* de façon indépendante et dans les mêmes conditions – c'est-à-dire *avec remise*. On fait un arbre pondéré et obtient un *schéma de Bernoulli*.

On appelle X la variable aléatoire qui compte le nombre de succès sur les n épreuves.

X prend les valeurs : 0;1 ; 2 ; ...n. On écrit : $X(\Omega) = \{0;1;2;...;n\}$.

X suit une *loi binomiale* $\mathcal{B}(n, p)$ de paramètres n et p.

La loi de probabilité de X est donnée par :

Valeurs de k	0	1	2		n
$p_k = P(X = k)$	P(X=0)	P(X=1)	P(X=2)	•••	P(X=n)

Toutes ces valeurs sont données par les calculatrices avec les instructions Binompdf ou Bpd ou Binomial pdf ou encore Binomiale DdP ... voir ci-dessous.

On sait que pour tout k = 0;1;2;...;n, la probabilité d'obtenir k succès est donnée par la formule : $P(X=k) = \binom{n}{k} p^k \times (1-p)^{n-k}$ où $\binom{n}{k}$ désigne le <u>coefficient binomial</u> « k parmi n », c'est-à-dire le nombre de chemins qui aboutissent à k succès.

Remarques

1°) La probabilité « *pour obtenir* <u>au plus k</u> succès » = $P(X \le k)$, c'est une « <u>probabilité cumulée croissante</u> », c'est-à-dire :

$$P(X \le k) = P(X=0) + P(X=1) + \dots + P(X=k) = \sum_{i=0}^{k} P(X=i)$$

Cette valeur est aussi <u>donnée par les calculatrices</u> avec Binomcdf ou Bcd ou Binomial Cdf ou encore Binomiale FdR ... voir ci-dessous.

2°) La probabilité « pour obtenir <u>au moins k</u> succès » = $P(X \ge k)$, c'est aussi une « <u>probabilité cumulée décroissante</u> », c'est-à-dire :

$$P(X \ge k) = P(X = k) + P(X = k+1) + \dots + P(X = n) = \sum_{i=k}^{n} P(X = i)$$

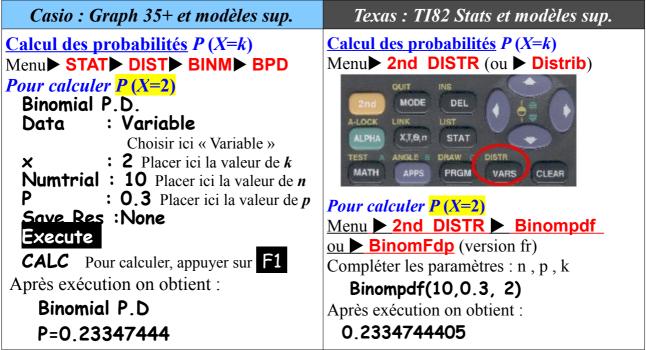
Attention !!!

Ces valeurs <u>cumulées décroissantes</u> *ne sont pas* données par les calculatrices.

Cependant, si on veut utiliser les calculatrices, on peut utiliser l'événement contraire :

Donc:
$$P(X \ge k) = 1 - P(X \le k - 1)$$
.

Attention aux symboles « inférieur » et « inférieur ou égal ».


Utilisation de la calculatrice

Exemples: Nous choisissons ici une variable aléatoire X qui suit la loi binomiale $\mathcal{B}(n;p)$.

Calcul des coefficients binomiaux $\mathcal{B}(10; 0.3)$.

Casio : Graph 35+ et modèles sup.	Texas : T182 Stats et modèles sup.		
Calcul des coefficients binomiaux	Calcul des coefficients binomiaux		
Dans le Menu RUN,	Pour celeuler (10)		
appuyer sur la touche OPTN ,	Pour calculer $\begin{pmatrix} 10 \\ 3 \end{pmatrix}$,		
puis choisir PROB.	taper 10 ,		
Pour calculer $\begin{pmatrix} 10 \\ 3 \end{pmatrix}$,	puis appuyer sur la touche MATH ,		
1 our carculer $\begin{pmatrix} 3 \end{pmatrix}$,	choisir le menu PRB,		
taper 10 ,	puis choisir nCr		
puis choisir nCr,	ou Combinaison (version fr),		
puis taper 3 et EXE .	puis taper 3 et ENTER.		

Loi de probabilité d'une loi binomiale $\mathcal{B}(10; 0.3)$.

Proba cumulées ou **Fonction de répartition** d'une loi binomiale **B**(10 ; 0.3).

Casio: Graph 35+ et modèles sup.

Calcul des proba. cumulées $P(X \le k)$

Menu ► STAT ► DIST ► BINM ► BCD

Pour calculer $P(X \leq 7)$

Binomial C.D. (C pour Cumulées)

Data : Variable

Choisir ici « Variable »

X
Numtrial
7 Placer ici la valeur de k
10 Placer ici la valeur de n

P : 0.3 Placer ici la valeur de p

Save Res: None

Execute

CALC Pour calculer, appuyer sur **F1**

Après exécution on obtient :

Binomial C.D

P=0.99840961

Texas: T182 Stats et modèles sup.

Calcul des proba. cumulées $P(X \le k)$ Menu \triangleright 2nd DISTR (\triangleright Distrib)

Pour calculer $P(X \le 7)$

Menu ▶ 2nd DISTR ▶ Binomcdf

ou **▶ BinomFrép** (version fr)

Compléter les paramètres : n, p, k

Binomcdf(10,0.3,7)

Après exécution on obtient :

.9984096136

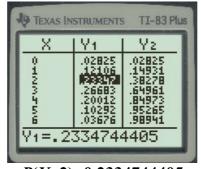
Autre méthode sur *T182 Stats et modèles sup. Très pratique !*

(je ne connais pas la procédure équivalente sur Casio! Si vous connaissez, écrivez-moi) :

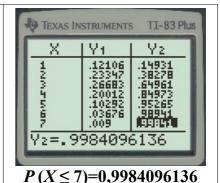
Aller dans \triangleright $f(x) = ou \triangleright Y = et rentrer directement les fonctions$

\Y1= ▶2nde Distrib Binompdf(n,p,X) pdf ou fdp comme fct de distribution de proba.

\Y2 = ▶2nde Distrib Binomcdf(n,p,X) cdf ou fdc comme fct de distribution cumulée,...


ou

Y1= Binomfdp(n,p,X) et


 $Y2 = \triangleright 2nde \ Distrib \ BinomFrép(n,p,X)$ (version fr) avec les valeurs exactes de n et p. Puis $\triangleright 2nde \ TABLE$ pour afficher le tableau de valeurs.

Y1 et Y2 rei	ntrées
--------------	--------

P(X=2)=0,2334744405

Attention! Si la machine affiche **ERROR** dans Y1, il faut aller dans ▶ 2nde TableSet ou ▶ 2nde Déf Table pour redéfinir le pas : commencer à 0 et définir un pas égal à 1.

0	.02825	.02825	۱
.5	ERROR	.02825	
1	.12106	.14931	
1.5	ERROR	.14931	

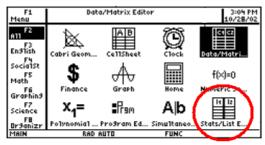
.../...

Et sur ...les TI-89 Titanium & Voyage 200

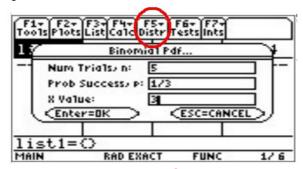
1°) Calcul des coefficients binomiaux : nCr

Menu ▶ 2nd MATH ▶ Probabilités ▶ nbrComb()

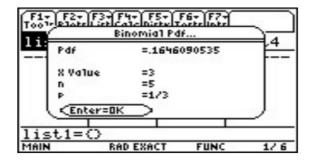
nbrComb(n,k) ENTRER


Exemple: nbrComb(6,2) puis ENTRER donne 15

Sur les TI-89 Titanium & Voyage 200

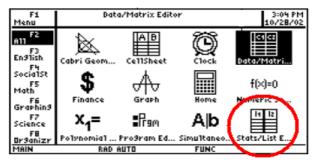

2°) Calcul des probabilités P(X=k)

Comment calculer les probabilités d'obtenir « exactement *k* succès » pour une loi binomiale sur une TI-89 Titanium ou une Voyage 200 ?

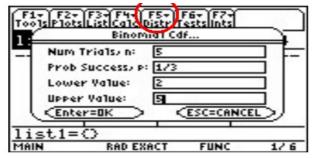

 Choisir dans le Bureau Apps (menu d'accueil) de la calculatrice : Stats/Edits ou Stats/List Edits...

Puis F5 pour obtenir toutes les distributions DISTR :

- Sélectionner B: Binomial Pdf ou B: Binomiale DdP (version fr)
- Puis Compléter les paramètres :
 - Num Trials, n: = valeur de n. Par ex. : n = 5
 - **Prob Succès**, p := valeur de p. Par ex. : p = 1/3
 - \times Value: = valeur de k. Par ex. : k = 3
- puis ENTRER
- On obtient après exécution : P(X=3) = pdf = 0.1646090535



Sur les TI-89 Titanium & Voyage 200


3°) Calcul des probabilités $P(X \le k)$

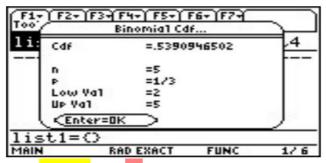
Comment calculer les probabilités cumulées d'obtenir « au plus *k* succès » pour une loi binomiale sur une TI-89 Titanium ou une Voyage 200 ?

Choisir dans le *Bureau Apps (menu d'accueil*) de la calculatrice :
 Stats/Edits ou Stats/List Edits...

- Puis **F5** pour obtenir toutes les distributions **DISTR** :

Sélectionner C: Binomial Cdf ou C: Binomiale Fdr (version fr)
 Puis Compléter les paramètres :

- Num Trials, n: = valeur de n. Par ex. : n = 5


- **Prob Succès**, p := valeur de p. Par ex. : p = 1/3

- Lower Value: = valeur minimale de k. Par ex. : k = 2

- Upper Value: = valeur maximale de k. Par ex. : k = 5

puis ENTRER

- On obtient après exécution : $P(2 \le X \le 5) = Cdf = .5390946502$

- Pour calculer $P(X \le 5) = P(O \le X \le 5)$, il suffit de choisir la valeur minimale = 0.