Fonctions exponentielles

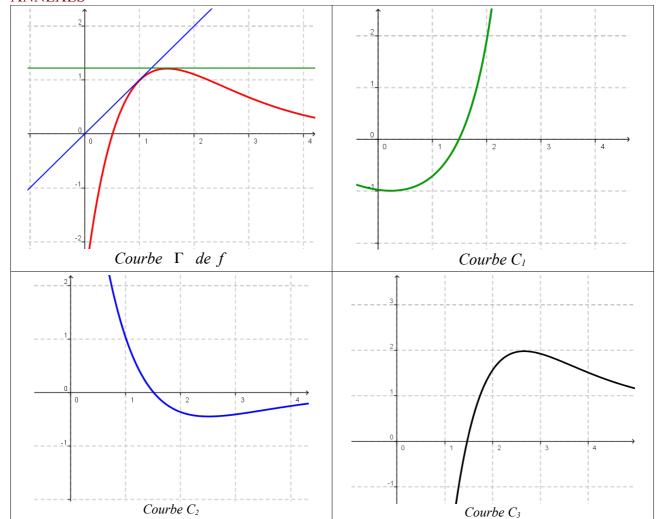
Cette fiche sera complétée au fur et à mesure

Exercice n°1. BAC ES 2000. [RÉSOLU]

Le graphique donné en annexe est celui de la courbe représentative Γ (*lire gamma*) d'une fonction f définie sur [0;4] et de ses tangentes aux points d'abscisses 1 et $\frac{3}{2}$.

- 1°) Lire graphiquement f(1), f'(1) et $f'(\frac{3}{2})$
- 2°) Parmi les trois courbes données en annexe, laquelle est susceptible de représenter la fonction dérivée f' de f? Justifier votre réponse à l'aide d'arguments graphiques.
- 3°) On admet que l'expression de la fonction f s'écrit $f(x) = (ax+b)e^{-x+1}$, où a et b sont des nombres réels à déterminer.
 - a) Calculer la dérivée $f' \operatorname{de} f$.
 - b) En utilisant les données de la question 1, déterminer les valeurs de a et de b.
 - c) Étudier le sens de variations de la fonction f et dresser son tableau de variations.
 - d) Résoudre l'équation f(x) = 0.

ANNEXES



Corrigé

- 1°) Lire graphiquement f(1), f'(1) et $f'(\frac{3}{2})$.
- La courbe passe par le point de coordonnées A (1;1) donc f(1) = 1.
- La tangente T_1 à la courbe Γ en ce point passe par l'origine O(0;0) et par A(1;1)

donc son coefficient directeur est $f'(1) = m_1 = \frac{\Delta y}{\Delta x} = \frac{1-0}{1-0} = 1$ donc f'(1) = 1.

- La tangente $T_{1,5}$ à la courbe Γ au point d'abscisse $\frac{3}{2}$ es parallèle à l'axe des abscisses [horizontale], donc son coefficient directeur est nul. Donc : $f'\left(\frac{3}{2}\right)=0$.
- 2°) Parmi les trois courbes données en annexe, laquelle est susceptible de représenter la fonction dérivée f' de f? Justifier votre réponse à l'aide d'arguments graphiques.

La courbe de f' doit passer par les points de coordonnées A (1;1) et (1,5;0). Seule la courbe n°2 remplit ces deux conditions. Donc $C_{f'} = C_2$.

3.a) Calculer la dérivée f' de f.

f est un produit de deux fonctions : $f(x)=u(x)\times v(x)$, avec $u(x) = a x + b \rightarrow u'(x) = a$ $v(x) = e^{-x+1} \rightarrow v'(x) = -1 e^{-x+1}$ Donc $f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$ $f'(x) = a \times e^{-x+1} + (ax+b) \times (-1e^{-x+1})$ $f'(x) = a \times e^{-x+1} - (ax+b) \times e^{-x+1}$ On met e^{-x+1} en facteur (à droite). Ce qui donne :

 $f'(x) = (a - ax - b) \times e^{-x+1}$ Conclusion: por tout $x \in [0, 4]$ $f'(x) = (-ax + a - b)e^{-x+1}$

3.b) En utilisant les données de la question 1, déterminer les valeurs de a et de b.

On sait que : f'(1) = 1, donc $(-a \times 1 + a - b)e^{-1+1} = 1$, donc $-be^{0} = 1$. On obtient une première équation :

$$-b=1 \qquad (1)$$

D'autre part, $f'\left(\frac{3}{2}\right)=0$ donc $(-a\times 1,5+a-b)e^{-1,5+1}=0$ donc

 $(-0.5a-b)e^{-0.5} = 0$. Or, pour tout nombre réel $x : e^x > 0$, donc $e^{-0.5} > 0$, donc différent de 0. On obtient une deuxième équation :

$$-0.5a-b=0$$
 (2)

On obtient ainsi le système de 2 équations à deux inconnues :

$$\begin{cases} -b=1 \\ -0.5 \ a-b=0 \end{cases} \text{ donc } \begin{cases} b=-1 \\ -0.5 \ a-(-1)=0 \end{cases} \text{ donc } \begin{cases} b=-1 \\ -0.5 \ a=-1 \end{cases} \text{ donc } \begin{cases} b=-1 \\ a=2 \end{cases}$$

Conclusion: La fonction f est définie par : $f(x) = (2x-1)e^{-x+1}$

3.c) Étudier le sens de variations de la fonction f et dresser son tableau de variations.

D'après la question 3.a) on a $f'(x) = (-ax + a - b)e^{-x+1}$ avec a = 2 et b = -1. Donc, pour tout $x \in [0; 4]$: $f'(x) = (-2x + 2 - (-1))e^{-x+1}$ Par conséquent : $f'(x) = (-2x + 3)e^{-x+1}$

Étude du signe de f'(x).

$$f'(x) = 0 \quad \text{ssi} \quad (-2x+3)e^{-x+1} = 0$$

ssi $(-2x+3)=0$ ou $e^{-x+1}=0$

Or, pour tout nombre réel $x : e^x > 0$, donc $e^{-0.5} > 0$, donc différent de 0. Donc,

$$f'(x) = 0$$
 ssi $-2x+3=0$ ssi $x = \frac{3}{2}$

De même :

$$f'(x) > 0$$
 ssi $(-2x+3)e^{-x+1} > 0$

Or, pour tout réel $x : e^x > 0$. Donc, le signe de f'(x) est le même que celui de -2x+3.

Donc
$$f'(x) > 0$$
 ssi $x < \frac{3}{2}$ [donc $f'(x) < 0$ de l'autre côté].

On obtient le TV de la fonction sur [0;4] :

x	0	3/2	4
f'(x)	+	0	_
f(x)	f(3/2) à calculer		
		à calculer	
			*
	f(0) à calculer		f(4)
	à calculer		à calculer

3.d) Résoudre l'équation f(x) = 0.

$$f(x) = 0$$
 ssi $(2x-1)e^{-x+1} = 0$
ssi $(2x-1)=0$ ou $e^{-x+1} = 0$

Or, pour tout nombre réel $x : e^x > 0$, donc $e^{-0.5} > 0$, donc différent de 0. Donc,

$$f(x) = 0$$
 ssi $2x-1=0$ ssi $x = \frac{1}{2}$

Conclusion: Cette équation admet une seule solution sur [0;4]. Donc

$$S = \left\{ \frac{1}{2} \right\}$$