Chapitre 02 Terminale ES

Fonctions exponentielles

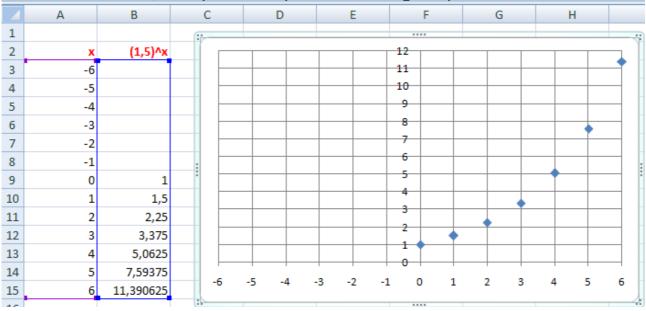
Ce que dit le programme

CONTENUS	CAPACITÉS ATTENDUES	COMMENTAIRES	
Fonctions exponentielles Fonction $x \mapsto q^x$ avec $q > 0$. Relation fonctionnelle.	Connaître l'allure de la représentation graphique de la fonction $x \mapsto q^x$ selon les valeurs de q .	Ces fonctions sont présentées comme un prolongement continu des suites géométriques. On admet que ces fonctions sont dérivables sur R et transforment les sommes en produits.	
Fonction exponentielle $x \mapsto e^x$.	Connaître la dérivée, les variations et la représentation graphique de la fonction exponentielle. Utiliser la relation fonctionnelle pour transformer une écriture.	On fait observer à l'aide d'un logiciel qu'entre toutes les fonctions exponentielles, une seule semble avoir 1 pour nombre dérivé en 0. L'existence et l'unicité de cette fonction sont admises. Le nombre e est l'image de 1 par cette fonction.	
Dérivée de $x \mapsto e^{u(x)}$ où u est une fonction dérivable.	Calculer la dérivée d'une fonction de la forme $x \mapsto e^{u(x)}$.	On étudie des exemples de fonctions de la forme $x \mapsto e^{u(x)}$ notamment avec $u(x) = -k x$ ou $u(x) = -k x^2$ ($k > 0$), qui sont utilisés dans des domaines variés. La notion générale de composée est hors programme.	

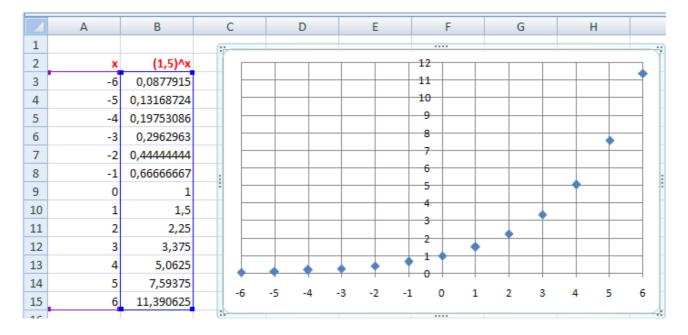
1. Des suites géométriques aux fonctions exponentielles

1.1) Activité préparatoire

On considère la suite géométrique définie pour tout entier n par $v_n = 1,5^n$. A l'aide d'un tableur, nous pouvons représenter le nuage de points de cette suite.

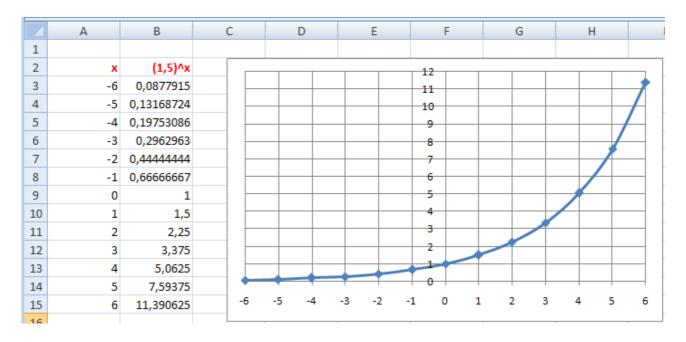


En utilisant les propriétés de la classe de 4ème, nous pouvons aussi calculer les valeurs de «1,5ⁿ» pour des valeurs négatives de n, en utilisant la propriété : $q^{-n} = \frac{1}{q^n}$. Donc, on peut étendre ces valeurs pour des *exposants* négatifs.



Si on relie tous ces points par *des segments*, on obtient une ligne brisée, donc une courbe d'une fonction continue mais *non dérivable*.

Par contre, si on relie tous ces points par une ligne continue et parfaitement lisse et arrondie, on obtient la courbe d'une fonction <u>définie</u>, <u>continue et dérivable</u> sur tout **R.**



Ceci permet de définir une nouvelle fonction $f: x \mapsto f(x) = q^x$. Dans cette fonction, définie sur tout \mathbb{R} , *la variable est située dans l'exposant*. On aurait pu l'appeler « *fonction exposantielle* », mais comme en anglais un exposant se dit « *exponent* », les fonctions du type $f: x \mapsto f(x) = q^x$, q > 0 et $q \ne 1$, s'appellent des « *fonctions exponentielles* ». Nous distinguerons deux cas, comme pour les suites géométriques :

- → Si q > 1, la fonction $f: x \mapsto f(x) = q^x$ sera strictement croissante sur (tout) \mathbb{R} .
- → Si 0 < q < 1, la fonction $f: x \mapsto f(x) = q^x$ sera strictement décroissante sur \mathbb{R} .

Ces fonctions conservent les mêmes propriétés calculatoires que les « puissances » vues en classe de 4ème. Entre autres : $q^{x+y} = q^x \times q^y$. Ce qui nous facilite la tâche.

1.2) Les fonctions exponentielles : $x \mapsto f(x) = q^x$

Propriété et Définition : Soit q un nombre réel strictement positif.

Il existe une unique fonction f définie sur (tout) \mathbb{R} et qui vérifie les trois conditions suivantes:

- La courbe représentative de *f prolonge de façon continue* (d'un seul trait) le nuage de points de la suite géométrique (q^n) ;
- La fonction f est dérivable $sur \mathbb{R}$ (sa courbe est parfaitement lisse et bien arrondie);
- la fonction f « transforme une somme en un produit » ; c'est-à-dire que, pour tous nombres réels x et y, on a : $f(x+y) = f(x) \times f(y)$

La fonction f s'appelle « *la fonction exponentielle de base q* ».

1.3) Prpriétés

Propriétés calculatoires: Soit q un nombre réel strictement positif. Alors, pour tous $x, y \in \mathbb{R}$ et tout $n \in \mathbb{N}$

$$(P_0): q^x > 0$$

$$(P_1): q^{x+y}=q^x\times q^y$$

$$(P_2): q^{-x} = \frac{1}{q^x}$$

$$(P_3): q^{x-y} = \frac{q^x}{q^y}$$

$$(\mathbf{P}_4): \quad \left(q^x\right)^n = q^{nx}$$

$$(P_5): (q^x)^{\frac{1}{2}} = \sqrt{q^x} = q^{\frac{x}{2}}$$

Un cas particulier de la propriété (P_5) peut s'écrire encore (pour x = 1) :

$$(P_{5bis})$$
: pour tout $q > 0$: $q^{\frac{1}{2}} = \sqrt{q}$

Exemples:

1°) Pour calculer à la calculatrice, on utilise la touche :

 $1,7^{2,3} = 1,7$ $\stackrel{\wedge}{}$ 2,3 = 3,3887; $1,7^{-2,3} = 0,295099$ et $2^{\pi} = 8,82498$. 2°) Écrire avec sous la forme q^x : $a = \frac{2^{3,5} \times 2^{-4}}{4^{-2,5}}$ et $b = \sqrt{3} \times \left(\frac{1}{3}\right)^{2,7} \times 3^{1,3}$

$$a = \frac{2^{3,5} \times 2^{-4}}{4^{-2,5}} = \frac{2^{3,5-4}}{(2^2)^{-2,5}} = \frac{2^{-0,5}}{2^{-5}} = 2^{-0,5+5} \text{ donc } \boxed{a = 2^{4,5}}$$

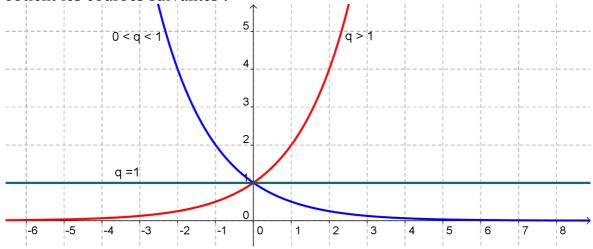
$$b = 3^{0,5} \times 3^{-2,7} \times 3^{1,3} = 3^{0,5-2,7+1,3} \text{ donc } \boxed{b = 3^{-0,9}}$$

1.4) Sens de variation

Propriétés: Soit q un nombre réel strictement positif. Alors, la fonction $f: x \mapsto q^x$ admet le même sens de variation que la suite géométrique (q^n) :

- 1°) Si q > 1, alors f est **strictement croissante** sur \mathbb{R}
- 2°) Si 0 < q < 1, alors f est strictement décroissante sur \mathbb{R}
- 3°) Si q = 1, alors f est constante et égale à 1 sur \mathbb{R} .

On obtient les courbes suivantes :



Par lecture graphique, nous pouvons déduire les propriétés suivantes :

Conséquences:

1°) Soit q un nombre réel strictement positif et différent de 1. Alors, pour tous nombres réels a et b, on a l'équivalence :

$$(P_6) q^a = q^b si et seulement si a = b$$

2°) Si q > 1, alors, la fonction $f: x \mapsto q^x$ est strictement croissante.

Donc, pour tous nombres réels a et b, on a :

(P₇)
$$a < b$$
 si et seulement si $q^a < q^b$

3°) Si 0 < q < 1, alors, la fonction $f: x \mapsto q^x$ est strictement décroissante.

Donc, pour tous nombres réels a et b, on a :

(P_{7bis})
$$a < b$$
 si et seulement si $q^a > q^b$

Ces propriétés nous permettent de résoudre des équations et des inéquations.

Exemples:

1°) Résoudre l'équation : $2^{3x+2}-1=0$ Cette équation peut s'écrire : $2^{3x+2}=1$ ou encore : $2^{3x+2}=2^0$.

Or, on sait que [$q^a = q^b$ si et seulement si a = b] d'après la propriété P₆. Donc $2^{3x+2}=2^0$ est équivalente à 3x+2=0 . Donc $x=\frac{-2}{3}$.

<u>Conclusion</u>: Cette équation admet une seule solution et on a : $S = \left\{ \frac{-2}{3} \right\}$.

2°) Résoudre l'inéquation : $2^{3x+2}-1=0$

Cette inéquation peut s'écrire : $2^{3x+2} \ge 1$ ou encore : $2^{3x+2} \ge 2^0$. Or, pour q = 2, la fonction $f: x \mapsto q^x$ est strictement croissante. Donc [a > b ssi $q^a > q^b$] d'après la propriété P₇. Donc $2^{3x+2} \ge 2^0$ est équivalente à $3x+2 \ge 0$. Donc $x \ge \frac{-2}{2}$.

<u>Conclusion</u>: Cette inéquation admet pour solutions : $S = \left| \frac{-2}{3}, +\infty \right|$.

2. La fonction exponentielle

2.1) La fonction exponentielle : $x \mapsto \exp(x) = e^x$

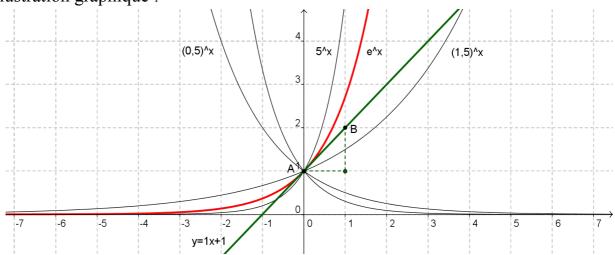
<u>Théorème et définition</u>: Il existe une unique fonction exponentielle $x \mapsto q^x$ qui admet pour nombre dérivé 1 en 0.

Cette fonction s'appelle « LA » fonction exponentielle et a pour base le nombre réel : $e \approx 2,71828...$ et se note $exp : x \mapsto exp(x) = e^x$.

Le nombre e n'est autre que *l'image de* 1 par cette fonction : $e = exp(1) = e^1$.

Le nombre \mathbf{e} (comme π) est un nombre réel irrationnel qui admet une écriture illimitée et désordonnée...

Illustration graphique:



En particulier : $e^0 = 1$ et $e^1 = e$.

2.2) Prpriétés

La fonction exponentielle hérite des mêmes propriétés que les autres (e > 1).

<u>Propriétés calculatoires</u>: pour tous $x, y \in \mathbb{R}$ et tout $n \in \mathbb{N}$

$$(P_0): e^x > 0$$

$$(P_1): e^{x+y}=e^x\times e^y$$

$$(P_2): e^{-x} = \frac{1}{e^x}$$

$$(P_3): e^{x-y} = \frac{e^x}{e^y}$$

$$(\mathbf{P}_4): \quad \left(e^x\right)^n = e^{nx}$$

$$(P_5): (e^x)^{\frac{1}{2}} = \sqrt{e^x} = e^{\frac{x^2}{2}}$$

Un cas particulier de la propriété (P_5) peut s'écrire encore (pour x = 1):

$$(P_{5bis})$$
: puisque $e > 0$: $e^{\frac{1}{2}} = \sqrt{e}$

Exemples:

Pour calculer à la calculatrice, on utilise la touche e^x ou 2nde Ln

$$e^{2,3} = 9,97418...$$
; $e^{-1,3} = 0,27253...$;

2.3) Conséquences

Propriétés: Comme e > 1, nous avons les propriétés suivantes :

1°) Pour tous nombres réels a et b, on a l'équivalence :

(P₆)
$$e^a = e^b$$
 si et seulement si $a = b$

2°) Comme e > 1, la fonction exponentielle est strictement croissante sur \mathbb{R} . Donc, pour tous nombres réels a et b, on a :

(P₇)
$$a < b$$
 si et seulement si $e^a < e^b$

Ces propriétés nous permettent de résoudre des équations et des inéquations.

2.4) Dérivée et sens de variations

Théorème: La fonction exponentielle est dérivable sur (tout) \mathbb{R} et est *égale à sa fonction dérivée*. Ce qui donne :

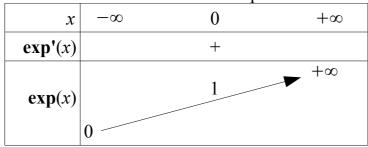
(P₈) Pour tout
$$x \in \mathbb{R}$$
 $(e^x)' = e^x$.

Comme pour tout $x \in \mathbb{R}$: $e^x > 0$ donc pour tout $x \in \mathbb{R}$: $(e^x)' > 0$. Par conséquent : la fonction dérivée est (strictement) positive sur tout \mathbb{R} donc, la fonction exponentielle est strictement croissante sur tout \mathbb{R} .

De plus e > 1, la fonction exponentielle tend vers $+\infty$ lorsque x tend vers $+\infty$.

$$\lim_{x \to +\infty} e^x = +\infty \text{ et } \lim_{x \to -\infty} e^x = 0$$

D'où le tableau de variations de la fonction exponentielle :



Application: Équation de la droite tangente à la courbe en 0 : $\exp(0) = e^0 = 1$ et $\exp'(0) = e^0 = 1$. L'équation de la tangente est y = f'(0)(x-0) + f(0) Donc : y = 1(x-0) + 1. Ce qui donne : y = x + 1.

2.5) Les fonctions composées $x \mapsto e^{u(x)}$

Théorème: Soit u une fonction définie et dérivable sur \mathbb{R} . Alors, la fonction est $x \mapsto e^{u(x)} = \exp[u(x)]$ est définie et dérivable sur \mathbb{R} et on a :

(P₁₀) Pour tout
$$x \in \mathbb{R}$$
 : $(e^{u(x)})' = u'(x) \times e^{u(x)}$.

Cas particuliers:

1°) La fonction définie par u(x) = -kx, k > 0, est dérivable sur \mathbb{R} et u'(x) = -k. Donc, la fonction composée $f: x \mapsto e^{-kx}$ est dérivable sur \mathbb{R} et a pour dérivée :

$$(e^{-kx})' = -k \times e^{-kx}$$
 pour tout $x \in \mathbb{R}$

k > 0, donc -k < 0. Et comme $e^{-kx} > 0$, cette dérivée est négative pour tout $x \in \mathbb{R}$. Ce qui montre que cette fonction f est strictement décroissante sur \mathbb{R} . De plus f(0) = 1. D'où le tableau de variations :

x	$-\infty$	0	$+\infty$
f'(x)		_	
f(x)	+8	1	0

2°) La fonction définie par : $u(x)=-kx^2$, k>0, est dérivable sur \mathbb{R} et u'(x)=-2kx. Donc, la fonction composée $g:x\mapsto e^{-kx^2}$ est dérivable sur \mathbb{R} et a pour dérivée :

$$(e^{-kx^2})' = -2kx \times e^{-kx^2}$$
 pour tout $x \in \mathbb{R}$

k > 0, donc -2k < 0. Et comme $e^{-kx} > 0$, le signe de la dérivée est l'opposé du signe de x, pour tout $x \in \mathbb{R}$. Ce qui montre que cette fonction f est strictement croissante sur $] -\infty$; 0] et strictement décroissante sur $[0; +\infty]$. De plus g(0) = 1. D'où le tableau de variations:

x	$-\infty$	0	$+\infty$
g'(x)	+	0	_
g(x)	0	v 1	• 0

Exemples:

Calculer les dérivées des fonctions suivantes : $f(x)=e^{-3x}$ et $g(x)=e^{-\frac{x}{2}}$ Les deux fonctions f et g sont définies et dérivables sur \mathbb{R} et pour tout $x \in \mathbb{R}$ on a :

$$f'(x)=u'(x)\times e^{u(x)}=-3\times e^{-3x}=-3e^{-3x}$$

et
$$g'(x)=u'(x)\times e^{u(x)}=-\frac{1}{2}\times 2x\times e^{\frac{-x^2}{2}}=-xe^{\frac{-x^2}{2}}$$