Chapitre 01

Suites géométriques

CONTENUS	CAPACITÉS ATTENDUES	COMMENTAIRES
Suites géométriques.	Reconnaître et exploiter une suite géométrique dans une situation donnée. Connaître la formule donnant $1 + q + + q^n$ avec $q \neq 1$.	
Limite de la suite (q"), q étant un nombre réel strictement positif.	Déterminer la limite d'une suite géométrique de raison strictement positive. Étant donné une suite (q^n) avec $0 < q < 1$, mettre en œuvre un algorithme permettant de déterminer un seuil à partir duquel q^n est inférieur à un réel a positif donné.	Le tableur, les logiciels de géométrie dynamique et de calcul sont des outils adaptés à l'étude des suites, en particulier pour une approche expérimentale de la notion de limite. On détermine, sans soulever de difficulté, la limite de la somme 1+ q + + q ⁿ quand 0 < q < 1. Le comportement lorsque n tend vers +∞ de la somme des n premiers termes de certaines suites géométriques fournit un exemple de suite croissante n'ayant pas pour limite +∞. On évoque les aspects historiques et philosophiques de cette question en présentant quelques paradoxes classiques.
Suites arithmético- géométriques.	Traduire une situation donnée à l'aide d'une suite arithmético-géométrique.	Toute indication doit être donnée dans l'étude des suites arithmético-géométriques.

1. Suites géométriques

1.1) Suites géométriques définies par récurrence

Définition 1.:

Soit q un nombre réel donné. On dit qu'une suite (v_n) est une suite géométrique de *raison q*, lorsqu'on donne son premier terme v_0 et chaque terme s'obtient en multipliant le terme précédent par q.

Autrement dit : $v_0 \in \mathbb{R}$ est donné et pour tout entier naturel $n : v_{n+1} = v_n \times q = q v_n$.

Si le terme initial est
$$v_0$$
.
$$v_0 \xrightarrow{\times q} v_1 \xrightarrow{\times q} v_2 \xrightarrow{\times q} v_3 \cdots v_n \xrightarrow{\times q} v_{n+1}$$

Si la suite commence au rang 1, on commence à partir de v_I .

Exemple: La suite définie par $\begin{cases} v_0 = 3 \\ v_{n+1} = 2 \times v_n \end{cases}$ est une s.g. telle que $v_0 = 3$ et q = 2.

Calculons les 2 termes suivants :

Le 2ème terme : $v_1 = v_0 \times q = 3 \times 2 = 6$. Le troisième terme $v_2 = v_1 \times q = 6 \times 2 = 12$.

Comment démontrer qu'une suite est géométrique?

Il suffit de calculer et de montrer que le quotient $\frac{v_{n+1}}{v}$ = Constante

(càd indépendante de n). Cette constante est la raison de la suite géométrique (v_n) .

1.2) Définition explicite d'une suite géométrique

Théorème :

Soit q un nombre réel <u>donné</u>. Soit (v_n) une suite géométrique de raison q.

 (P_1) : pour tout entier $n \ge 0$: $v_n = v_0 \times q^n = v_0 q^n$

(P₂): pour tout entier $n \ge 1$: $v_n = v_1 \times q^{(n-1)} = v_1 q^{n-1}$

(P₃): pour tous entiers $n \ge 0$ et: $p \ge 0$: $v_n = v_n \times q^{(n-p)} = v_n q^{n-p}$

Exemple: La suite définie par $\begin{cases} v_0 = 0.5 \\ v_{n+1} = 2 \times v_n \end{cases}$ est une suite géométrique de premier terme $v_0 = 0.5$ et de raison q = 2. Calculons v_{10} et v_{15} :

Cette suite commence au rang 0. On utilise la formule $v_n = v_0 q$. Donc : $v_{10} = v_0 \times q^{10} = 0.5 \times 2^{10} = 0.5 \times 1024 = 512$ et $v_{15} = v_0 \times q^{15} = 0.5 \times 2^{15} = 16384$.

1.3) Sens de variation et représentation graphique

On peut calculer la différence : $v_{n+1} - v_n = v_0 q^{n+1} - v_0 q^n = v_0 q^n (q-1)$.

Donc le sens de variation d'une suite géométrique (v_n) dépend du signe de q et de la position de q par rapport à 1.

Théorème 1:

Soit q un nombre réel <u>donné</u>. Alors le sens de variation de la suite géométrique (q^n) de raison q et de <u>premier terme 1</u> est donné par :

- La suite (q^n) est constante si et seulement si : q = 1.
- La suite (q^n) est croissante si et seulement si : q > 1.
- La suite (q^n) est décroissante si et seulement si : 0 < q < 1.
- La suite (q^n) n'est ni croissante, ni décroissante si et seulement si : q < 0.

Dans les trois cas, la représentation graphique de la suite est un ensemble de points d'ordonnée à l'origine v_0 .

Si le 1er terme est positif,

- Lorsqu'on multiplie par un nombre q supérieur à 1, on obtient un agrandissement. => Suite croissante
- Si q est compris entre 0 et 1, on obtient une réduction => Suite décroissante
- Si on multiplie par un nombre négatif, on change de signe, et si on recommence, on rechange de signe, La suite alterne « terme positif, terme

Théorème 2 :

Soit (v_n) une suite géométrique de raison q et de premier terme v_0 . Alors $v_n = v_0 q^n$:

- Si $v_0 > 0$, alors la suite (v_n) varie dans le même sens que la suite (q^n) .
- Si $v_0 < 0$, alors la suite (v_n) varie dans le sens contraire que la suite (q^n) .

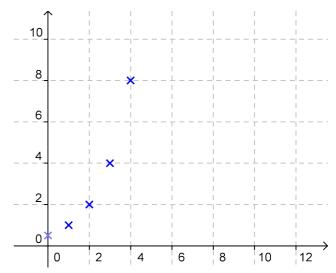
Exemple : Étudier le sens de variation de la suite (un) définie par :

et la représenter dans un repère (O; I; J).

Tout d'abord, il s'agit d'une suite géométrique de premier terme $v_0 = 0.5$ et de raison q = 2.

Le premier terme $v_0 = 0.5$ est positif et la raison q > 1, donc la suite est strictement croissante.

Sa représentation graphique est est l'ensemble de points de la figure cicontre.



1.4) Application

Exemple 1 : En 2010, Vincent dépose 3500 euros à la Caisse d'Épargne à un taux d'intérêts composés de 5% par an. [Chaque année, les intérêts obtenus s'ajoutent au capital et engendrent d'autres intérêts l'année suivante].

Calculer le montant dont il disposera après un an, deux ans et au bout de 8 ans.

On appelle C_n le capital disponible à la fin de la n^{ème} année. Chaque année, les intérêts sont calculés sur le montant du capital disponible.

$$C_1 = C_0 + 5\%C_0 = (1 + 0.05) \times C_0 = 1.05 \times 3500 = 3675 \in \text{ en } 2011.$$

 $C_2 = C_1 + 5\%C_1 = (1 + 0.05) \times C_1 = 1.05 \times 3675 = 3858.75 \in \text{ en } 2012.$
 $C_3 = C_2 + 5\%C_3 = (1 + 0.05) \times C_3 = 1.05 \times 3858.75 = 4051.69 \in \text{ en } 2013.$

 $C_3 = C_2 + 5\% C_2 = (1 + 0.05) \times C_2 = 1.05 \times 3858, 75 = 4051.69 \in \text{ en } 2013.$

Le montant du capital disponible définit une suite géométrique (C_n) de premier terme C_0 = 3500 et de raison q = 1,05. Donc, pour tout entier n, on a $C_{n+1} = 1,05 \times C_n$. Donc on peut utiliser la formule (P_1) pour trouver l'expression explicite de C_n en fonction de n.

$$C_n = C_0 q^n = C_0 \mathbf{x} (1,05)^n$$

Pour la 8ème année, n = 8, on a :

$$C_8 = C_0 q^8 = 3500 \text{ x}(1.05)^8 = 5171.10$$

Conclusion: En 2018, Vincent disposera d'un montant de 5171,10 euros.

Exemple 2 : M. DAUTO a acheté une voiture en 2003 pour un montant de 18 000

euros. La valeur d'un véhicule diminue de 15% par an. [Chaque année, le prix moyen des véhicules de la même année, diminue de 15%].

Calculer la valeur résiduelle de la voiture de Vincent en 2012.

On appelle V_n la valeur de la voiture la $n^{\grave{e}me}$ année. Chaque année, la valeur du véhicule diminue de 15%. Donc

$$V_1 = V_0 - 15\%V_0 = (1 - 0.15) \times V_0 = 0.85 \times 18000 = 15300 \in \text{en } 2004.$$

 $V_2 = V_1 - 15\%V_1 = (1 - 0.15) \times V_1 = 0.85 \times 15300 = 13005 \in \text{en } 2005.$

• • •

Le montant la valeur de la voiture définit *une suite géométrique* (V_n) de premier terme V_0 = 18000 et de raison q = 0.85. Donc, pour tout entier n, on a $V_{n+1} = 0.85 \times V_n$. Donc on peut utiliser la formule (P_1) pour trouver l'expression explicite de C_n en fonction de n.

$$V_n = V_0 q^n = V_0 \mathbf{x}(0.85)^n$$

[Calcul de n en 2012:

On sait que V_0 correspond à 2003, donc V_1 correspond à 2004,... donc n = 2012 - 2003 = 9.]

En 2012, n = 9, et
$$V_9 = V_0 q^9 = 18\,000 \,\mathrm{x} (0.85)^9 = 4169 \,\mathrm{C}$$

Conclusion : En 2012, la valeur résiduelle de la voiture de M. DAUTO est de 4169 euros.

1.5) Somme des termes d'une suite géométrique

Propriété

La somme des puissances successives d'un nombre réel $q \ne 1$ s'écrit sous la forme :

(P₄):
$$1+q+q^2+\cdots+q^n=\frac{1-q^{n+1}}{1-q}$$

Démonstration:

Soit q un nombre réel $(q \neq 1)$.

On pose $S_n = 1 + q + q^2 + \dots + q^n$, alors S_n est la somme des (n+1) premiers termes d'une suite géométrique (v_n) de <u>premier terme</u> $v_0 = 1$ et de <u>raison</u> q.

On a alors
$$S_n = 1 + q + q^2 + \dots + q^n$$

et, en multipliant par q: $qS_n = q + q^2 + \dots + q^n + q^{n+1}$

On retrouve (presque) les mêmes termes, mais décalés. On soustrait membre à membre et on obtient :

$$S_n-qS_n=1-q^{n+1}$$
 Donc:
$$(1-q)S_n=1-q^{n+1}$$
 Et comme $(q\neq 1)$, on a:
$$S_n=\frac{1-q^{n+1}}{1-q}$$

ou encore

$$S_n = \frac{1 - q^{nombre \ de \ termes}}{1 - q}$$

Exemple 1:

Calculer la somme $S=1+2+4+8+16+\cdots+256$.

Tout d'abord, on constate que S est la sommes des puissances de 2 jusqu'à $2^8 = 256$.

Donc: $S=1+2+4+8+16+\cdots+2^8$, avec q=2. If y a **9** termss!

D'après la formule de la somme des termes d'une suite géométrique, on a :

$$S = \frac{1 - 2^9}{1 - 2} = \frac{1 - 512}{-1} = 511 \quad .$$

Cas général:

Propriété

Soit (v_n) une suite géométrique de <u>raison</u> $q \ne 1$ et de <u>premier terme</u> v_0 . Alors pour tout n : $v_n = v_0 q^n$. La somme des (n+1) premiers termes de la suite (v_n) s'écrit sous la forme :

(P₅):
$$S_n = v_0 + v_1 + v_2 + \dots + v_n = \frac{v_0 \times (1 - q^{n+1})}{1 - q}$$

Démonstration:

Soit q un nombre réel $(q \neq 1)$. On pose $S_n = v_0 + v_1 + v_2 + \cdots + v_n$. On met en facteur v_0 . Donc : $S_n = v_0 + v_0 q + v_0 q^2 + \cdots + v_0 q^n = v_0 \left(1 + q + q^2 + \cdots + q^n\right)$ D'où le résultat.

Exemple 2: Calculer la somme $S=5+\frac{5}{2}+\frac{5}{4}+\cdots+\frac{5}{64}$.

On remarque que les dénominateurs sont des puissances de 2. Donc :

$$S = \frac{5}{2^0} + \frac{5}{2^1} + \frac{5}{2^2} + \dots + \frac{5}{2^6} = 5\left(\frac{1}{2^0} + \frac{1}{2^1} + \frac{1}{2^2} + \dots + \frac{1}{2^6}\right) = 5\left[\left(\frac{1}{2}\right)^0 + \left(\frac{1}{2}\right)^1 + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^6\right]$$

Il y a 7 termes. Donc : $S = \frac{1 - \frac{1}{2^7}}{1 - \frac{1}{2}} = \frac{1 - \frac{1}{128}}{\frac{1}{2}} = 2 \times \frac{127}{128} = \frac{127}{64}$.

2. Limites de suites géométriques

2.1) Théorèmes (admis) et définitions

Soit q un nombre réel donné.

1°) Si q > 1, alors multiplier par un nombre supérieur à 1 correspond à un agrandissement. Donc, les termes de la suite géométrique (q^n) augmentent indéfiniment lorsque n tend vers $+\infty$ et dépassent tout nombre choisi au départ à partir d'un certain rang. On écrit :

$$\lim_{n\to+\infty}q^n=+\infty$$

On dit que « la limite de qⁿ lorsque n tend vers $+\infty$, est égale à $+\infty$ ».

Remarques:

- Si on multiplie par un premier terme $v_0 > 0$, on obtient la même limite $+\infty$.
- Par contre, si on multiplie par un premier terme $v_0 < 0$, la limite est égale à $-\infty$.
- Si q = 1, la suite est *constante*. Sa limite est aussi égale à 1.

2°) Si 0 < q < 1, alors multiplier par un nombre compris entre 0 et 1 correspond à une réduction. Donc, les termes de la suite géométrique (q^n) diminuent indéfiniment lorsque n tend vers $+\infty$ et deviennent plus petits que n importe quel nombre positif choisi au départ, aussi petit soit-il. On dit que « la limite de q^n lorsque n tend vers $+\infty$, est égale à 0 ». On écrit :

$$\lim_{n\to+\infty}q^n=0$$

Si on multiplie par *un premier terme* v_0 , quel que soit son signe, on obtient la même limite 0.

Définition:

Soit (u_n) une suite de nombres réels.

Si (u_n) tend vers *une limite finie*, on dit qu'elle est *convergente*.

Si (u_n) tend vers *l'infini* ou *n'admet pas de limite*, on dit qu'elle est *divergente*.

Exemples 1: Déterminer les limites lorsqu'elles existent, des suites suivantes :

1°)
$$u_{n+1} = 0.99 u_n$$
 avec $u_0 = -5$ 2°) $v_n = 5 \times (1.9)^n$ 3°) $w_n = \frac{-3^{n+1}}{2^n}$ 4°) $s_n = 5 - (0.7)^n$

1°) $u_{n+1} = 0.99 u_n$ et $u_0 = 5$.

 (u_n) est une suite géométrique de premier terme $u_0=5$ et de raison q=0.99.

Comme 0 < q < 1, la suite $(0,99)^n$ tend vers 0. En multipliant par tous les termes par 5, la limite ne change pas.

Conclusion: La suite (u_n) est convergente et $\lim_{n\to+\infty} q^n = 0$

 2°) $v_n = 5 \times (1,9)^n$

 (v_n) est une suite géométrique de premier terme $v_0 = 5$ et de raison q = 1,9.

Comme q > 1, la suite $(1,9)^n$ tend vers $+\infty$. $\lim_{n \to +\infty} (1,9)^n = +\infty$

En multipliant par tous les termes par 5 > 0, la limite ne change pas de signe.

Conclusion: La suite (v_n) est divergente et $\lim_{n \to +\infty} 5 \times (1,9)^n = +\infty$

3°) $w_n = \frac{-3^{n+1}}{2^n}$. Le terme général de la suite (w_n) peut s'écrire : $w_n = \frac{-3 \times 3^n}{2^n} = -3 \times \left(\frac{3}{2}\right)^n$

 (w_n) est une suite géométrique de premier terme $w_0 = -3$ et de raison $q = \frac{3}{2}$

Comme q > 1, la suite $\left(\frac{3}{2}\right)^n$ tend vers $+\infty$. $\lim_{n \to +\infty} \left(\frac{3}{2}\right)^n = +\infty$

En multipliant par tous les termes par -3, la limite change de signe.

Conclusion: La suite (w_n) est divergente et $\lim_{n \to +\infty} -5 \times (1,9)^n = -\infty$

- 4°) $s_n = 5 (0.7)^n$
 - (s_n) est la somme d'un terme constant et d'une une suite géométrique de premier terme -1 et de raison q = 0,7.

Le terme constant (est indépendant de n, donc) ne varie pas, donc sa limite est égale à lui-même.

D'autre part, comme 0 < q < 1, la suite $(0,7)^n$ tend vers 0. Donc : $\lim_{n \to +\infty} -(0,7)^n = 0$.

Par conséquent, on a $\lim_{n\to+\infty} [5-(0,7)^n]=5$.

Conclusion: La suite (s_n) est convergente et $\lim_{n \to +\infty} s_n = 5 - 0 = 5$.

Exemple 2: La compagnie Mineral SA exploite un gisement de fer depuis 1990. La première année, la compagnie a extrait 100 000 tonnes de fer. Vu les difficultés d'extraction, l'exploitation du gisement diminue de 1% chaque année. On appelle u_n le nombre de tonnes de fer extraites l'année (1990 + n).

- 1°) Montrer que $u_1 = 99000$ puis calculer u_2 .
- 2°) Quelle est la nature de la suite (u_n) . Justifier votre réponse.
- 3°) Donner l'expression explicite de u_n en fonction de n.
- 4°) Calculer le nombre de tonnes de fer extraites en 2011 arrondi à l'unité.
- 5°) Montrer que la quantité totale de fer extraite entre 1990 et l'année (1990 + n) est donnée par la formule :

$$S_n = (1 - 0.99^{n+1}) \times 10^7$$

6°) Calculer en millions de tonnes la quantité de fer que cette compagnie pourra extraire si l'exploitation continue indéfiniment dans ces mêmes conditions.

1°) On appelle u_n le nombre de tonnes de fer extraites l'année (1990 + n). Donc

$$u_1 = u_0 - 1\%u_0 = (1 - 0.01) \times u_0 = 0.99 \times 100\ 000 = 99000 \text{ en } 1991.$$

 $u_2 = u_1 - 1\%u_1 = (1 - 0.01) \times u_1 = 0.99 \times 99\ 000 = 98010 \text{ en } 1992.$
et ainsi de suite...

2°) Le nombre de tonnes de fer u_{n+1} extraites l'année (1990 + n +1) s'obtient à partir de u_n en diminuant cette quantité de 1%, donc en multipliant par 0,99.

Ainsi, la suite (u_n) définit *une suite géométrique* de premier terme $u_0 = 100~000$ et de raison q = 0.99. Donc, pour tout entier n, on a : $u_{n+1} = 0.99 \times u_n$.

3°) D'après les propriétés des suites géométriques, on peut utiliser la formule (P_1) pour trouver l'expression explicite de u_n en fonction de n.

$$u_n = u_0 q^n$$

 $u_n = 100 000 \times (0.99)^n$

4°) Pour calculer le nombre de tonnes de fer extraites en 2011, il faut d'abord calculer n: On a : 1990 + n = 2011, donc n = 2011 – 1990. D'où : n = 21. Maintenant, on calcule u_{21} . D'après la formule explicite de (u_n) on a :

 $u_{21} = 100\ 000\ x(0.99)^{21} = 80\ 972.78...$

Conclusion: En 2011, la compagnie a extrait 80 973 tonnes de fer.

5°) De 1990 à 1990 + n, il y a (n + 1) années. Il faut calculer la quantité totale de fer extraite pendant ces (n + 1) années. Donc, il faut calculer la somme S_n des (n + 1) premiers termes de la

suite géométrique (u_n) . D'après le cours, on sait que

$$\begin{split} S_n &= u_0 + u_1 + u_2 + \dots + u_n \\ S_n &= \frac{u_0 \times (1 - q^{n+1})}{1 - q} \\ S_n &= \frac{100000 \times (1 - 0.99^{n+1}) \times 100000000}{1 - 0.99^{n+1}} \\ S_n &= \frac{100000 \times (1 - 0.99^{n+1})}{1 - 0.99} \\ S_n &= \frac{100000 \times (1 - 0.99^{n+1})}{0.01} \\ \end{split}$$

$$\begin{aligned} S_n &= 100000 \times (1 - 0.99^{n+1}) \times 1000000000 \\ Par conséquent : \\ S_n &= (1 - 0.99^{n+1}) \times 10^7 \end{aligned}$$

6°) Pour calculer *la quantité totale* de fer que cette compagnie pourra extraire si l'exploitation continue indéfiniment dans ces mêmes conditions, il faut chercher la limite de S_n lorsque n tend vers $+\infty$.

Or, 0 < 0.99 < 1 donc la suite géométrique (0.99^n) tend vers 0 lorsque n tend vers $+\infty$.

On a donc:
$$\lim 0.99^n = 0$$

Donc:
$$\lim 0.99 \times 0.99^n = 0$$

Ce qui donne :
$$\lim_{n \to \infty} 0.99^{n+1} = 0$$

Donc:
$$\lim_{n \to \infty} (1 - 0.99^{n+1}) = 1$$

En multipliant par
$$10^7$$
, on a : $\lim_{n \to +\infty} (1 - 0.99^{n+1}) \times 10^7 = 10^7$

<u>Conclusion</u>: Si l'exploitation continue indéfiniment dans les mêmes conditions, la compagnie pourra extraire $10^7 = 10$ millions de tonnes de fer de ce gisement.

3. Suites arithmético-géométriques

3.1) Définition

Soient a et b deux nombres réels donnés.

On définit une *suite arithmético-géométrique* (u_n) par la donnée de son premier terme $u_0 \in \mathbb{R}$ et par *la relation de récurrence* : $u_{n+1} = a u_n + b$ pour tout entier n.

On écrit :
$$\begin{cases} u_0 \in \mathbb{R} & est donné \\ u_{n+1} = a u_n + b \end{cases}$$

La *fonction associée* à cette suite arithmético-géométrique est une fonction affine définie sur \mathbb{R} par : f(x) = ax + b.

Cas particuliers

- ① Si a = 0, alors la suite (u_n) est *constante* et égale à b.
- ② Si a = 1, alors la suite (u_n) est *arithmétique* de raison r = b.
- \Im Si b = 0, alors la suite (u_n) est géométrique de raison q = a.

Exemple:

La suite définie par
$$\begin{cases} u_0 = 10 \\ u_{n+1} = \frac{1}{2} u_n + 2 \end{cases}$$
 est une suite arithmético-géométrique.

La *fonction associée* à cette suite arithmético-géométrique est une fonction affine définie sur \mathbb{R} par : $f(x) = \frac{1}{2}x + 2$.

Calcul des premières valeurs. $u_0 = 10$, $u_1 = f(u_0) = \frac{1}{2} \times 10 + 2 = 7$

$$u_2 = f(u_1) = \frac{1}{2} \times 7 + 2 = \frac{11}{2} = 5,5$$
; $u_3 = f(u_2) = \frac{1}{2} \times \frac{11}{2} + 2 = \frac{19}{4} = 4,75$; ...

3.2) Représentation graphique

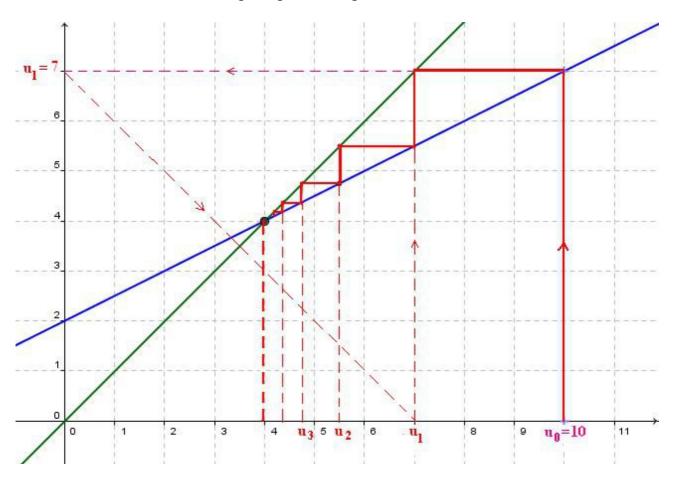
On se place dans *un repère orthonormé* (O; I; J) et on suit les étapes suivantes : <u>1ère étape</u> : On construit la droite d, *représentation graphique de la fonction affine f.* Pour cela, il suffit de calculer les coordonnées de deux points :

- Pour x = 0, y = 2, donc le point $A(0;2) \in d$;
- Pour x = 4, y = 4, donc le point $B(4, 4) \in d$.

De même, on construit la droite Δ d'équation « y = x » qu'on appelle aussi *la première bissectrice* du repère.

<u>2ème étape</u>: On place u_0 sur l'axe des abscisses, puis $u_1 = f(u_0)$ sur l'axe des ordonnées.

<u>3ème étape</u>: Afin de placer l'image de u_1 , il faut replacer u_1 sur l'axe des abscisses. Pour cela, on construit le symétrique de u_1 par rapport à la première bissectrice Δ . Puis on recommence avec u_1 , pour placer u_2 , puis u_3 ,...etc.



Conjectures: Par lecture graphique:

<u>Conjeture</u> $n^{\circ}1$. Il semble que la suite (u_n) est strictement décroissante et bornée. Tous les termes sont compris entre 4 et 10.

<u>Conjeture n°2</u>. Il semble que la suite (u_n) est convergente et a pour limite 4, l'abscisse du point d'intersection de la droite d avec la première bissectrice.

3.2) Étude de la suite (u_n)

Nous allons utiliser une nouvelle suite, dite « *suite auxiliaire* », (v_n) définie pour tout entier n, de la manière suivante :

$$v_n = u_n - 4 \qquad (1)$$

Qu'on peut traduire immédiatement, pour tout entier n, par :

$$u_n = v_n + 4 \qquad (2)$$

1ère étape : Montrer que la suite (v_n) est géométrique.

Pour tout entier n, on a

$$v_{n+1} = u_{n+1} - 4 \qquad \text{d'après la relation (1)}$$
Donc
$$v_{n+1} = \frac{1}{2}u_n + 2 - 4 \qquad \text{d'après la relation de récurrence de } (u_n)$$
Donc
$$v_{n+1} = \frac{1}{2}u_n - 2 \qquad \text{je calcule } 2 - 4$$
Donc
$$v_{n+1} = \frac{1}{2}(v_n + 4) - 2 \qquad \text{d'après la relation (2)}$$
Donc
$$v_{n+1} = \frac{1}{2}v_n + 2 - 2 \qquad \text{je distribue}$$
Donc
$$v_{n+1} = \frac{1}{2}v_n \qquad \text{je barre } +2 \text{ et } -2.$$

De plus, le premier terme de la suite (v_n) est donné par : $v_0 = u_0 - 4 = 10 - 4 = 6$.

<u>Conclusion</u>: La suite (v_n) est une suite géométrique de premier terme $v_0 = 6$ et de raison $q = \frac{1}{2}$.

<u>2ème étape</u>: Déterminer une expression explicite de (v_n) et de (u_n) en fonction de n.

 (v_n) est une suite géométrique de premier terme $v_0 = 6$ et de raison $q = \frac{1}{2}$. Donc

Pour tout entier
$$n$$
, on a : $v_n = v_0 q^n$
donc $v_n = 6 \times \left(\frac{1}{2}\right)^n$
ou encore $v_n = 6 \times (0,5)^n$

D'autre part, d'après la relation (2), on a : $u_n = v_n + 4$

Donc
$$u_n = 6 \times (0.5)^n + 4$$

Conclusion: Pour tout entier n, on a: $v_n = 6 \times (0.5)^n$ et $u_n = 6 \times (0.5)^n + 4$.

3ème étape : Étudier le sens de variation des deux suites (v_n) et (u_n)

La suite (v_n) est géométrique de premier terme $v_0 = 6 > 0$ et de raison q = 0.5. Comme q est compris entre 0 et 1 et $v_0 > 0$, la suite (v_n) est <u>strictement décroissante</u>. Et comme pour tout entier n, $u_n = v_n + 4$, les deux suites (u_n) et (v_n) ont le même sens de variation. Donc, la suite (u_n) est aussi strictement décroissante.

<u>4ème étape</u>: Déterminer les limites des deux suites (v_n) et (u_n) .

La suite (v_n) est géométrique de premier terme $v_0 = 6$ et de raison q = 0.5.

Comme 0 < q < 1, la suite (v_n) est convergente et $\lim_{n \to +\infty} v_n = 0$

De plus, d'après la relation (2), pour tout entier n, $u_n = v_n + 4$, donc la suite (u_n) est convergente et $\lim_{n \to +\infty} u_n = 4$, abscisse du point d'intersection de la droite d et la première bissectrice.

<u>5ème étape</u>: Déterminer la sommes des (n+1) premiers termes des deux suites (v_n) et (u_n) et déterminer leurs limites

La suite (v_n) est géométrique de premier terme $v_0 = 6$ et de raison q = 0.5. Donc :

$$S_n' = v_0 + v_1 + v_2 + \cdots + v_n$$

Donc:
$$S_n' = \frac{v_0 \times (1 - q^{n+1})}{1 - q}$$

Donc:
$$S_n' = \frac{4 \times (1 - (0.5)^{n+1})}{1 - 0.5}$$

Donc:
$$S_n' = \frac{4 \times (1 - (0.5)^{n+1})}{0.5}$$

Par conséquent:
$$S_n' = 8 \times \left[1 - (0.5)^{n+1}\right]$$

D'autre part,
$$\lim_{n \to +\infty} (0.5)^n = 0$$
 donc $\lim_{n \to +\infty} [1 - (0.5)^n] = 1$. et en multipliant par 8 : $\lim_{n \to +\infty} S_n' = 8$

Par ailleurs, d'après la relation (2), pour tout entier n, $u_n = v_n + 4$, donc

$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$

$$S_n = (v_0 + 4) + (v_1 + 4) + (v_2 + 4) + \dots + (v_n + 4)$$

$$S_n = (v_0 + v_1 + v_2 + \dots + v_n) + 4 \times (n+1) \text{ il y a (n+1) termes}$$

$$S_n = S_n' + 4 \times (n+1)$$

Par conséquent :
$$S_n = 8 \times \left[1 - (0,5)^{n+1}\right] + 4(n+1)$$
 D'autre part,
$$\lim_{n \to +\infty} S_n' = 8 \quad \text{et} \quad \lim_{n \to +\infty} 4(n+1) = +\infty \quad \text{. Donc} : \\ \lim_{n \to +\infty} S_n = +\infty$$

OUF!