Chapitre 01

Suites numériques Rappels sur les suites (classe de 1ère)

I. Généralités sur les suites (classe de 1ère)

1.1) Définition

Une suite numérique est une fonction u définie de \mathbb{N} dans \mathbb{R} , qui à *tout* <u>nombre</u> <u>entier</u> n, fait correspondre son image u(n) qu'on note aussi u_n , $n \ge 0$ ou $n \ge 1$...

La suite se note $(u_n)_n$. Le nombre u_n s'appelle le *terme de rang n* ou encore le *terme général* de la suite. Le nombre u_0 s'appelle le *premier terme* ou *terme initial* de la suite.

Autrement dit:

Une suite numérique est une *liste de nombres réels* « *numérotés* » par les nombres entiers naturels en commençant à partir de 0 ; ou à partir de 1, ou de 2, ...

Si u_n est le terme général d'une suite, alors u_{n-1} est le terme précédent et u_{n+1} est le terme suivant du terme u_n .

Exemples:

- 1°) La suite définie par $u_n=2n+1$ est définie sur tout \mathbb{N} . On écrit $(u_n)_{n\in\mathbb{N}}$ (u_n) est la suite des nombres entiers impairs.
- 2°) La suite définie par $v_n = 5 \times \left(\frac{2}{5}\right)^n$ est définie pour tout entier n.
- 3°) La suite (w_n) définie de la manière suivante : Le premier terme est égal à 1 et chaque terme est égal à la moitié du précédent augmenté de 10. On peut écrire :

$$\begin{cases} w_0 = 1 \\ w_{n+1} = \frac{1}{2} w_n + 10, n \ge 0 \end{cases}$$

4°) La suite (C_n) définie de la manière suivante : Le premier terme désigne le montant C_0 d'un capital déposé à la Caisse d'Épargne à un taux d'intérêt (simple ou composé) 3,5%, et C_n le montant du capital obtenue au bout de n années.

1.2) Deux types de définition des suites

<u>Définition des suites type 1</u>:

Si pour tout entier n, le terme général de la suite (u_n) s'écrit en fonction de l'entier n, $u_n = f(n)$, on dit que la suite (u_n) est définie par une formule explicite ou définie explicitement en fonction de n. f s'appelle la fonction associée à la suite (u_n) .

Remarque: Si on a une relation du type $u_n = f(n)$, alors pour tout n, u_n peut être calculé directement à partir de n.

Exemple: Calculer les deux premiers termes, puis u_{10} de la suite : $u_n = \frac{6}{n(n-1)}$.

Il est clair que (u_n) est définie à partir de n = 2, u_0 et u_1 n'existent pas. Donc, les deux premiers

$$u_2 = \frac{6}{2 \times (2-1)} = \frac{6}{2} = 3$$
; $u_3 = \frac{6}{3 \times (3-1)} = \frac{6}{6} = 1$ et $u_{50} = \frac{6}{10 \times (10-1)} = \frac{6}{90} = \frac{1}{15}$.

Définition des suites type 2 :

Une suite récurrente est une suite définie par la donnée d'un premier terme et une formule de récurrence qui permet de calculer chaque terme en fonction du terme précédent pas à pas. Autrement dit :

$$\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = f(u_n), n \ge 0 \end{cases} \text{ ou encore } \begin{cases} u_0 \in \mathbb{R} \\ u_n = f(u_{n-1}), n \ge 1 \end{cases}$$
 f s'appelle la fonction associée à la suite (v_n) .

Exemple : calculer les deux premiers termes, puis u_{10} de la suite définie par récurrence :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{2}u_n + 10 \end{cases} \quad \text{donc} \quad \begin{cases} u_0 = 1 \\ u_{n+1} = g\left(u_n\right) \end{cases} \quad \text{où } g \text{ est la fonction} \quad x \to g\left(x\right) = \frac{1}{2}x + 10 \quad .$$

On a donc
$$w_1 = \frac{1}{2} \times w_0 + 10 = \frac{1}{2} \times 1 + 10 = \frac{21}{2}$$
, $w_2 = \frac{1}{2} \times w_1 + 10 = \frac{1}{2} \times \frac{21}{2} + 10 = \frac{61}{4}$

Pour calculer v_{10} , il faut calculer v_9 et tous les termes précédents.

C'est trop long pour un calcul à la main! On peut donc utiliser un tableur, la calculatrice ou un logiciel de calcul formel.

1.3) Avec un tableur

Pour calculer les termes d'une suite avec un tableur

Suites définies explicitement				Suites récurrentes			
	Α	В			Α	В	
1	1	= u(A1)		1	0	v₀ (donné)	
2	=A1+1	= u(A2)		2	=A1+1	= v(B1)	
Sélectionn	er A1B1A2E	32, puis tirer vei	Sélectionner A1B1A2B2, puis tirer vers le				
bas, jusqu'à la valeur de <i>n</i> cherchée dans la colonne A. Les termes de la suite sont dans la colonne B.				bas, jusqu'à la valeur de <i>n</i> cherchée dans la colonne A. Les termes de la suite sont dans la colonne B.			

1.4) Avec une calculatrice

Avec une TI 83+ [E] = Enter [V]=Vert	Avec une Casio 35+		
Taper sur la touche MODE	Taper sur la touche MENU		
Sélectionner SEQ ou SUITE	Sélectionner RECUR		
Sélectionner $Y=$, ou $f(x) =$, puis :	Sélectionner TYPE (F3)		
nMin =, valeur 1er rang = 0 ou 1	an = An + B, expression suites		
u(n)=, expression suites explicites	explicites		
u(nMin) = terme initial suites récurrentes	an+1=Aan+Bn+C, suites récurrentes		

TABLE. donne la table des valeurs. Les flèches de directions permettent d'obtenir les valeurs suivantes.

an+2 = Aan+1+Ban+...Rentrer la formule, puis (F5) SET, détermine début et fin du rang ... et le terme initial, suites récurrentes. (F6) TABLE, donne la table des valeurs.

1.5) Avec un algorithme

Calcul du N-ème terme d'une suite récurrente de premier terme u0 et $u_{n+1}=1/2$ u_n+10 .

Déclaration Variables

k un nombre entier N un nombre entier U un nombre

Début Algorithme

Lire N

Affecter à k la valeur 0

Affecter à U la valeur u0

Pour k allant de 0 à N

Debut de Pour

Affecter à U la valeur (1/2)*U +10

Fin de Pour

Afficher Message « U(

Afficher N

Afficher Message «)= »

Afficher U

Fin Algorithme

2. Sens de variations

1.1) Suites croissantes, suites décroissantes

Définition 1:

- 1) La suite numérique (u_n) est dite *croissante* (ssi) pour tout $n: u_{n+1} \ge u_n$ (ssi) pour tout $n: u_{n+1}-u_n \ge 0$ (méthode algébrique).
- 2) La suite numérique (u_n) est dite *décroissante* (ssi) pour tout $n: u_{n+1} \le u_n$ pour tout $n: u_{n+1}-u_n \le 0$ (méthode algébrique).
- 3) La suite numérique (u_n) est dite *constante* (ssi) pour tout $n: u_{n+1} = u_n$.
- 4) La suite numérique (u_n) est dite *monotone* (ssi) elle est croissante ou décroissante.

Comment démontrer qu'une suite est croissante ou décroissante ?

Exemple:

Étudier le sens de variation de la suite (u_n) de terme général : $u_n = 2n - 3$

lère méthode:

Je calcule la différence de deux termes consécutifs u_n et u_{n+1} et je cherche son signe.

$$u_n = 2n - 3$$
, donc $u_{n+1} = 2(n+1) - 3 = 2n + 2 - 3 = 2n - 1$

Donc $u_{n+1} - u_n = (2n-1) - (2n-3) = 2n-1-2n+3 = +2$ Donc $u_{n+1} - u_n > 0$ donc $u_{n+1} > u_n$ donc la suite (u_n) est strictement croissante.

<u>2ème méthode</u>: On étudie le sens de variation de la fonction f associée à la suite (u_n) . La fonction associée est définie par f(x)=2x+1 est strictement croissante, donc la suite (u_n) l'est aussi.

3. Suites arithmétiques

3.1) Suites arithmétiques définies par récurrence

Définition 1.:

Soit r un nombre réel donné. On dit qu'une suite (u_n) est une *suite arithmétique de raison r*, lorsqu'on donne son premier terme u_{θ} et chaque terme s'obtient en ajoutant r au terme précédent.

Autrement dit : $u_0 \in \mathbb{R}$ est donné et pour tout entier naturel $n : u_{n+1} = u_n + r$,

Si le terme initial est u_0 .

$$u_0 \xrightarrow{+\Gamma} u_1 \xrightarrow{+\Gamma} u_2 \xrightarrow{+\Gamma} u_3 \cdots u_n \xrightarrow{+\Gamma} u_{n+1}$$

Si la suite commence au rang 1, on commence à partir de u_1 .

Exemple: La suite définie par $\begin{cases} u_0 = 2 \\ u_{n+1} = u_n + 0,5 \end{cases}$ est une suite arithmétique de

premier terme $u_0 = 2$ et de raison r = 0.5. Calculons les 2 termes suivants :

Le 2ème terme : $\mathbf{u_1} = \mathbf{u_0} + \mathbf{r} = 2 + 0.5 = 2.5$. Le troisième terme $\mathbf{u_2} = \mathbf{u_1} + \mathbf{r} = 2.5 + 0.5 = 3$.

Comment démontrer qu'une suite est arithmétique ?

Il suffit de calculer et de montrer que la différence $u_{n+1} - u_n = constante$ (indépendante de n). Cette constante est la raison de la suite arithmétique.

3.2) Définition explicite d'une suite arithmétique

Théorème :

Soit (u_n) une suite arithmétique de premier terme est u_0 et de raison r.

 (P_1) : pour tout entier $n \ge 0$: $u_n = u_0 + n r$.

(P₂): pour tout entier: $n \ge 1$ $u_n = u_1 + (n-1) r$.

(P₃): pour tous entiers $n \ge 0$ et: $p \ge 0$: $u_n = u_p + (n-p) r$.

Exemple: La suite définie par $\begin{cases} u_0 = 2 \\ u_{n+1} = u_n + 0,5 \end{cases}$ est une suite arithmétique de

premier terme $u_0 = 2$ et de raison r = 2,5. Calculons u_{10} et u_{50} :

Cette suite commence au rang 0. On utilise la formule $u_n = u_0 + nr$. Donc :

 $\mathbf{u}_{10} = \mathbf{u}_0 + 10 \times \mathbf{r} = 2 + 10 \times 0, 5 = 7$ et $\mathbf{u}_{50} = \mathbf{u}_0 + 50 \times \mathbf{r} = 2 + 50 \times 0, 5 = 27$.

3.3) Sens de variation et représentation graphique

Par définition d'une suite arithmétique, $u_{n+1} = u_n + r$, donc : $u_{n+1} - u_n = r$,

Par conséquent, le sens de variation d'une suite arithmétique dépend du signe de r.

Théorème :

Soit (u_n) une suite arithmétique de raison r.

- La suite (u_n) est croissante si et seulement si : r > 0.
- La suite (u_n) est décroissante si et seulement si : r < 0.
- La suite (u_n) est constante si et seulement si : r = 0.

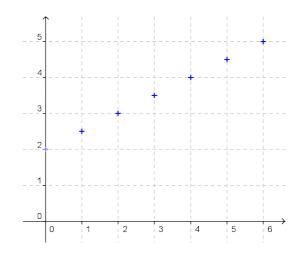
Dans les trois cas, la représentation graphique de la suite est un ensemble de points alignés sur une droite de coefficient directeur r et d'ordonnée à l'origine u_0 .

Exemple : Étudier le sens de variation de la suite (u_n) définie par : $\begin{cases} u_0 = 2 \\ u_{n+1} = u_n + 0.5 \end{cases}$

et la représenter dans un repère (O; I; J).

Tout d'abord, il s'agit d'une suite arithmétique de premier terme $u_0=2$ et de raison r=2,5.

La raison r > 0, donc la suite est strictement croissante.



3.4) Application

Exemple : En 2010, Vincent dépose 3500 euros à la Caisse d'Épargne. Ce montant est bloqué pour 8 ans à un taux d'*intérêts simples* de 5% par an. [*Il n'a pas le droit de toucher au capital, mais il peut chaque année retirer ses intérêts*].

Calculer le montant dont il disposera après un an, deux ans et au bout de 8 ans.

On appelle C_n le capital disponible à la fin de la n^{ème} année.

Chaque année, les intérêts I sont calculés uniquement sur le montant du capital bloqué. Donc : I = 5% de $3500 = (3500 \times 5) : 100 = 175$ euros.

Le montant du capital disponible définit *une suite arithmétique* (C_n) de premier terme C_0 = 3500 et de raison r = 175. Donc, on peut utiliser la définition pour calculer C_1 , C_2 et les formules pour calculer le u_n de l'an 2011.

$$C_1 = C_0 + r = 3500 + 175 = 3675 \in \text{ en } 2011.$$

 $C_2 = C_1 + r = 3675 + 175 = 3850 \in \text{ en } 2012.$

Pour calculer le capital correspondant à la 8ème année, on utilise la formule : (P₁)

 $C_8 = C_0 + 8 \times r = 3500 + 12 \times 175 = 3500 + 1400 = 4900 \in \text{en } 2018.$

Conclusion: En 2018, Vincent disposera d'un montant de 4900 euros.

3. Suites géométriques

3.1) Suites géométriques définies par récurrence

Définition 1.:

Soit q un nombre réel donné. On dit qu'une suite (v_n) est une suite géométrique de *raison q*, lorsqu'on donne son premier terme v_0 et chaque terme s'obtient en multipliant le terme précédent par q.

Autrement dit : $v_0 \in \mathbb{R}$ est donné et pour tout entier naturel $n : v_{n+1} = v_n \times q = q v_n$.

Si le terme initial est v_0 .

$$v_0 \xrightarrow{\times q} v_1 \xrightarrow{\times q} v_2 \xrightarrow{\times q} v_3 \cdots v_n \xrightarrow{\times q} v_{n+1}$$

Si la suite commence au rang 1, on commence à partir de v_I .

Exemple: La suite définie par $\begin{cases} v_0 = 3 \\ v_{n+1} = 2 \times v_n \end{cases}$ est une s.g. telle que $v_0 = 3$ et q = 2.

Calculons les 2 termes suivants

Le 2ème terme : $v_1 = v_0 \times q = 3 \times 2 = 6$. Le troisième terme $v_2 = v_1 \times q = 6 \times 2 = 12$.

Comment démontrer qu'une suite est géométrique ?

Il suffit de calculer et de montrer que le quotient $\frac{V_{n+1}}{V}$ = Constante

(càd indépendante de n). Cette constante est la raison de la suite géométrique (v_n) .

3.2) Définition explicite d'une suite géométrique

Théorème:

Soit q un nombre réel <u>donné</u>. Soit (v_n) une suite géométrique de raison q.

 (P_1) : pour tout entier $n \ge 0$: $v_n = v_0 \times q^n = v_0 q^n$

(P₂): pour tout entier $n \ge 1$: $v_n = v_1 \times q^{(n-1)} = v_1 q^{n-1}$

(P₃): pour tous entiers $n \ge 0$ et: $p \ge 0$: $v_n = v_p \times q^{(n-p)} = v_n q^{n-p}$

Exemple: La suite définie par $\begin{cases} v_0 = 0.5 \\ v_{n+1} = 2 \times v_n \end{cases}$ est une suite géométrique de premier terme $v_0 = 0.5$ et de raison q = 2. Calculons v_{10} et v_{15} :

Cette suite commence au rang 0. On utilise la formule $v_n = v_0 q$. Donc : $v_{10} = v_0 \times q^{10} = 0.5 \times 2^{10} = 0.5 \times 1024 = 512$ et $v_{15} = v_0 \times q^{15} = 0.5 \times 2^{15} = 16384$.

3.3) Sens de variation et représentation graphique

On peut calculer la différence : $v_{n+1} - v_n = v_0 q^{n+1} - v_0 q^n = v_0 q^n (q-1)$.

Donc le sens de variation d'une suite géométrique (v_n) dépend du signe de q et de la position de q par rapport à 1.

Théorème 1:

Soit q un nombre réel <u>donné</u>. Alors le sens de variation de la suite géométrique (q^n) de raison q et de <u>premier terme 1</u> est donné par :

- La suite (q^n) est constante si et seulement si : q = 1.
- La suite (q^n) est croissante si et seulement si : q > 1.
- La suite (q^n) est décroissante si et seulement si : 0 < q < 1.
- La suite (q^n) n'est ni croissante, ni décroissante si et seulement si : q < 0.

Dans les trois cas, la représentation graphique de la suite est un ensemble de points d'ordonnée à l'origine v_0 .

Théorème 2 :

Soit (v_n) une suite géométrique de raison q et de <u>premier terme</u> v_0 . Alors

- Si $v_0 > 0$, alors la suite (v_n) varie dans le même sens que la suite (q^n) .
- Si $v_0 < 0$, alors la suite (v_n) varie dans le sens contraire que la suite (q^n) .

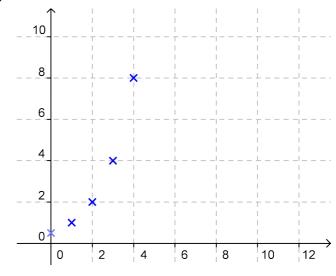
Exemple: Étudier le sens de variation de la suite (un) définie par : $\begin{cases} v_0 = 0.5 \\ v_{n+1} = 2v_n \end{cases}$

et la représenter dans un repère (O; I; J).

Tout d'abord, il s'agit d'une suite géométrique de premier terme $v_0 = 0.5$ et de raison q = 2.

Le premier terme $v_0 = 0.5$ est positif et la raison q > 1, donc la suite est strictement croissante.

Sa représentation graphique est est l'ensemble de points de la figure cicontre.



3.4) Application

Exemple 1 : En 2010, Vincent dépose 3500 euros à la Caisse d'Épargne à un taux d'*intérêts composés* de 5% par an. [Chaque année, les intérêts obtenus s'ajoutent au capital et engendrent d'autres intérêts l'année suivante].

Calculer le montant dont il disposera après un an, deux ans et au bout de 8 ans.

On appelle C_n le capital disponible à la fin de la $n^{\text{ème}}$ année. Chaque année, les intérêts sont calculés sur le montant du capital disponible.

$$C_1 = C_0 + 5\%C_0 = (1 + 0.05) \times C_0 = 1.05 \times 3500 = 3675 \in \text{ en } 2011.$$

 $C_2 = C_1 + 5\%C_1 = (1 + 0.05) \times C_1 = 1.05 \times 3675 = 3858.75 \in \text{ en } 2012.$
 $C_3 = C_2 + 5\%C_2 = (1 + 0.05) \times C_2 = 1.05 \times 3858.75 = 4051.69 \in \text{ en } 2013.$

...

Le montant du capital disponible définit *une suite géométrique* (C_n) de premier terme C_0 = 3500 et de raison q = 1,05. Donc, pour tout entier n, on a $C_{n+1} = 1,05 \times C_n$. Donc on peut utiliser la formule (P_1) pour trouver l'expression explicite de C_n en fonction de n.

$$C_n = C_0 q^n = C_0 \mathbf{x}(1,05)^n$$

Pour la 8ème année, n = 8, on a :

$$C_8 = C_0 q^8 = 3500 \text{ x}(1,05)^8 = 5171,10$$

Conclusion: En 2018, Vincent disposera d'un montant de **5171,10** euros.

Exemple 2 : M. DAUTO a acheté une voiture en 2003 pour un montant de 18 000 euros. La valeur d'un véhicule diminue de 15% par an. [Chaque année, le prix moyen des véhicules de la même année, diminue de 15%].

Calculer la valeur résiduelle de la voiture de Vincent en 2012.

On appelle V_n la valeur de la voiture la n^{ème} année. Chaque année, la valeur du véhicule diminue de 15%. Donc

$$V_1 = V_0 - 15\%V_0 = (1 - 0.15) \times V_0 = 0.85 \times 18000 = 15300 \in \text{en } 2011.$$

 $V_2 = V_1 - 15\%V_1 = (1 - 0.15) \times V_1 = 0.85 \times 15300 = 13005 \in \text{en } 2011.$

. . .

Le montant la valeur de la voiture définit *une suite géométrique* (V_n) de premier terme V_0 = 18000 et de raison q = 0.85. Donc, pour tout entier n, on a $V_{n+1} = 0.85$ x V_n . Donc on peut utiliser la formule (P_1) pour trouver l'expression explicite de C_n en fonction de n.

$$V_n = V_0 q^n = V_0 x(0.85)^n$$

[Calcul de n en 2012:

On sait que V_0 correspond à 2003, donc V_1 correspond à 2004,... donc n = 2012 - 2003 = 9.]

En 2012, n = 9, et
$$V_9 = V_0 q^9 = 18\,000 \,\mathrm{x} (0.85)^9 = 4169 \,\mathrm{C}$$

Conclusion : En 2012, la valeur résiduelle de la voiture de M. DAUTO est de 4169 euros.